Metamath Proof Explorer


Theorem drngmulrcan

Description: Cancellation of a nonzero factor on the right for multiplication. ( mulcan2ad analog). (Contributed by SN, 14-Aug-2024) (Proof shortened by SN, 25-Jun-2025)

Ref Expression
Hypotheses drngmullcan.b 𝐵 = ( Base ‘ 𝑅 )
drngmullcan.0 0 = ( 0g𝑅 )
drngmullcan.t · = ( .r𝑅 )
drngmullcan.r ( 𝜑𝑅 ∈ DivRing )
drngmullcan.x ( 𝜑𝑋𝐵 )
drngmullcan.y ( 𝜑𝑌𝐵 )
drngmullcan.z ( 𝜑𝑍𝐵 )
drngmullcan.1 ( 𝜑𝑍0 )
drngmulrcan.2 ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) )
Assertion drngmulrcan ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 drngmullcan.b 𝐵 = ( Base ‘ 𝑅 )
2 drngmullcan.0 0 = ( 0g𝑅 )
3 drngmullcan.t · = ( .r𝑅 )
4 drngmullcan.r ( 𝜑𝑅 ∈ DivRing )
5 drngmullcan.x ( 𝜑𝑋𝐵 )
6 drngmullcan.y ( 𝜑𝑌𝐵 )
7 drngmullcan.z ( 𝜑𝑍𝐵 )
8 drngmullcan.1 ( 𝜑𝑍0 )
9 drngmulrcan.2 ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) )
10 7 8 eldifsnd ( 𝜑𝑍 ∈ ( 𝐵 ∖ { 0 } ) )
11 drngdomn ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn )
12 4 11 syl ( 𝜑𝑅 ∈ Domn )
13 1 2 3 5 6 10 12 9 domnrcan ( 𝜑𝑋 = 𝑌 )