Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
drngmulrcan
Metamath Proof Explorer
Description: Cancellation of a nonzero factor on the right for multiplication.
( mulcan2ad analog). (Contributed by SN , 14-Aug-2024) (Proof
shortened by SN , 25-Jun-2025)
Ref
Expression
Hypotheses
drngmullcan.b
⊢ 𝐵 = ( Base ‘ 𝑅 )
drngmullcan.0
⊢ 0 = ( 0g ‘ 𝑅 )
drngmullcan.t
⊢ · = ( .r ‘ 𝑅 )
drngmullcan.r
⊢ ( 𝜑 → 𝑅 ∈ DivRing )
drngmullcan.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
drngmullcan.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
drngmullcan.z
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 )
drngmullcan.1
⊢ ( 𝜑 → 𝑍 ≠ 0 )
drngmulrcan.2
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) )
Assertion
drngmulrcan
⊢ ( 𝜑 → 𝑋 = 𝑌 )
Proof
Step
Hyp
Ref
Expression
1
drngmullcan.b
⊢ 𝐵 = ( Base ‘ 𝑅 )
2
drngmullcan.0
⊢ 0 = ( 0g ‘ 𝑅 )
3
drngmullcan.t
⊢ · = ( .r ‘ 𝑅 )
4
drngmullcan.r
⊢ ( 𝜑 → 𝑅 ∈ DivRing )
5
drngmullcan.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
6
drngmullcan.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
7
drngmullcan.z
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 )
8
drngmullcan.1
⊢ ( 𝜑 → 𝑍 ≠ 0 )
9
drngmulrcan.2
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) )
10
7 8
eldifsnd
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ∖ { 0 } ) )
11
drngdomn
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn )
12
4 11
syl
⊢ ( 𝜑 → 𝑅 ∈ Domn )
13
1 2 3 5 6 10 12 9
domnrcan
⊢ ( 𝜑 → 𝑋 = 𝑌 )