Metamath Proof Explorer


Theorem drngmulrcan

Description: Cancellation of a nonzero factor on the right for multiplication. ( mulcan2ad analog). (Contributed by SN, 14-Aug-2024) (Proof shortened by SN, 25-Jun-2025)

Ref Expression
Hypotheses drngmullcan.b B = Base R
drngmullcan.0 0 ˙ = 0 R
drngmullcan.t · ˙ = R
drngmullcan.r φ R DivRing
drngmullcan.x φ X B
drngmullcan.y φ Y B
drngmullcan.z φ Z B
drngmullcan.1 φ Z 0 ˙
drngmulrcan.2 φ X · ˙ Z = Y · ˙ Z
Assertion drngmulrcan φ X = Y

Proof

Step Hyp Ref Expression
1 drngmullcan.b B = Base R
2 drngmullcan.0 0 ˙ = 0 R
3 drngmullcan.t · ˙ = R
4 drngmullcan.r φ R DivRing
5 drngmullcan.x φ X B
6 drngmullcan.y φ Y B
7 drngmullcan.z φ Z B
8 drngmullcan.1 φ Z 0 ˙
9 drngmulrcan.2 φ X · ˙ Z = Y · ˙ Z
10 7 8 eldifsnd φ Z B 0 ˙
11 drngdomn R DivRing R Domn
12 4 11 syl φ R Domn
13 1 2 3 5 6 10 12 9 domnrcan φ X = Y