Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
drngmulrcan
Metamath Proof Explorer
Description: Cancellation of a nonzero factor on the right for multiplication.
( mulcan2ad analog). (Contributed by SN , 14-Aug-2024) (Proof
shortened by SN , 25-Jun-2025)
Ref
Expression
Hypotheses
drngmullcan.b
⊢ B = Base R
drngmullcan.0
⊢ 0 ˙ = 0 R
drngmullcan.t
⊢ · ˙ = ⋅ R
drngmullcan.r
⊢ φ → R ∈ DivRing
drngmullcan.x
⊢ φ → X ∈ B
drngmullcan.y
⊢ φ → Y ∈ B
drngmullcan.z
⊢ φ → Z ∈ B
drngmullcan.1
⊢ φ → Z ≠ 0 ˙
drngmulrcan.2
⊢ φ → X · ˙ Z = Y · ˙ Z
Assertion
drngmulrcan
⊢ φ → X = Y
Proof
Step
Hyp
Ref
Expression
1
drngmullcan.b
⊢ B = Base R
2
drngmullcan.0
⊢ 0 ˙ = 0 R
3
drngmullcan.t
⊢ · ˙ = ⋅ R
4
drngmullcan.r
⊢ φ → R ∈ DivRing
5
drngmullcan.x
⊢ φ → X ∈ B
6
drngmullcan.y
⊢ φ → Y ∈ B
7
drngmullcan.z
⊢ φ → Z ∈ B
8
drngmullcan.1
⊢ φ → Z ≠ 0 ˙
9
drngmulrcan.2
⊢ φ → X · ˙ Z = Y · ˙ Z
10
7 8
eldifsnd
⊢ φ → Z ∈ B ∖ 0 ˙
11
drngdomn
⊢ R ∈ DivRing → R ∈ Domn
12
4 11
syl
⊢ φ → R ∈ Domn
13
1 2 3 5 6 10 12 9
domnrcan
⊢ φ → X = Y