Metamath Proof Explorer


Theorem drngmullcan

Description: Cancellation of a nonzero factor on the left for multiplication. ( mulcanad analog). (Contributed by SN, 14-Aug-2024) (Proof shortened by SN, 25-Jun-2025)

Ref Expression
Hypotheses drngmullcan.b B = Base R
drngmullcan.0 0 ˙ = 0 R
drngmullcan.t · ˙ = R
drngmullcan.r φ R DivRing
drngmullcan.x φ X B
drngmullcan.y φ Y B
drngmullcan.z φ Z B
drngmullcan.1 φ Z 0 ˙
drngmullcan.2 φ Z · ˙ X = Z · ˙ Y
Assertion drngmullcan φ X = Y

Proof

Step Hyp Ref Expression
1 drngmullcan.b B = Base R
2 drngmullcan.0 0 ˙ = 0 R
3 drngmullcan.t · ˙ = R
4 drngmullcan.r φ R DivRing
5 drngmullcan.x φ X B
6 drngmullcan.y φ Y B
7 drngmullcan.z φ Z B
8 drngmullcan.1 φ Z 0 ˙
9 drngmullcan.2 φ Z · ˙ X = Z · ˙ Y
10 7 8 eldifsnd φ Z B 0 ˙
11 drngdomn R DivRing R Domn
12 4 11 syl φ R Domn
13 1 2 3 10 5 6 12 9 domnlcan φ X = Y