Step |
Hyp |
Ref |
Expression |
1 |
|
elALT2 |
|- E. w x e. w |
2 |
|
ax-nul |
|- E. z A. x -. x e. z |
3 |
|
elequ1 |
|- ( x = w -> ( x e. z <-> w e. z ) ) |
4 |
3
|
notbid |
|- ( x = w -> ( -. x e. z <-> -. w e. z ) ) |
5 |
4
|
spw |
|- ( A. x -. x e. z -> -. x e. z ) |
6 |
2 5
|
eximii |
|- E. z -. x e. z |
7 |
|
exdistrv |
|- ( E. w E. z ( x e. w /\ -. x e. z ) <-> ( E. w x e. w /\ E. z -. x e. z ) ) |
8 |
1 6 7
|
mpbir2an |
|- E. w E. z ( x e. w /\ -. x e. z ) |
9 |
|
ax9v2 |
|- ( w = z -> ( x e. w -> x e. z ) ) |
10 |
9
|
com12 |
|- ( x e. w -> ( w = z -> x e. z ) ) |
11 |
10
|
con3dimp |
|- ( ( x e. w /\ -. x e. z ) -> -. w = z ) |
12 |
11
|
2eximi |
|- ( E. w E. z ( x e. w /\ -. x e. z ) -> E. w E. z -. w = z ) |
13 |
|
equequ2 |
|- ( z = y -> ( w = z <-> w = y ) ) |
14 |
13
|
notbid |
|- ( z = y -> ( -. w = z <-> -. w = y ) ) |
15 |
|
ax7v1 |
|- ( x = w -> ( x = y -> w = y ) ) |
16 |
15
|
con3d |
|- ( x = w -> ( -. w = y -> -. x = y ) ) |
17 |
16
|
spimevw |
|- ( -. w = y -> E. x -. x = y ) |
18 |
14 17
|
syl6bi |
|- ( z = y -> ( -. w = z -> E. x -. x = y ) ) |
19 |
|
ax7v1 |
|- ( x = z -> ( x = y -> z = y ) ) |
20 |
19
|
con3d |
|- ( x = z -> ( -. z = y -> -. x = y ) ) |
21 |
20
|
spimevw |
|- ( -. z = y -> E. x -. x = y ) |
22 |
21
|
a1d |
|- ( -. z = y -> ( -. w = z -> E. x -. x = y ) ) |
23 |
18 22
|
pm2.61i |
|- ( -. w = z -> E. x -. x = y ) |
24 |
23
|
exlimivv |
|- ( E. w E. z -. w = z -> E. x -. x = y ) |
25 |
8 12 24
|
mp2b |
|- E. x -. x = y |
26 |
|
exnal |
|- ( E. x -. x = y <-> -. A. x x = y ) |
27 |
25 26
|
mpbi |
|- -. A. x x = y |