Step |
Hyp |
Ref |
Expression |
1 |
|
dvdivf.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvdivf.f |
|- ( ph -> F : X --> CC ) |
3 |
|
dvdivf.g |
|- ( ph -> G : X --> ( CC \ { 0 } ) ) |
4 |
|
dvdivf.fdv |
|- ( ph -> dom ( S _D F ) = X ) |
5 |
|
dvdivf.gdv |
|- ( ph -> dom ( S _D G ) = X ) |
6 |
2
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
7 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
8 |
1 7
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
9 |
4
|
feq2d |
|- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
10 |
8 9
|
mpbid |
|- ( ph -> ( S _D F ) : X --> CC ) |
11 |
10
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. CC ) |
12 |
2
|
feqmptd |
|- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( S _D F ) = ( S _D ( x e. X |-> ( F ` x ) ) ) ) |
14 |
10
|
feqmptd |
|- ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
15 |
13 14
|
eqtr3d |
|- ( ph -> ( S _D ( x e. X |-> ( F ` x ) ) ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
16 |
3
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. ( CC \ { 0 } ) ) |
17 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
18 |
1 17
|
syl |
|- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
19 |
5
|
feq2d |
|- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
20 |
18 19
|
mpbid |
|- ( ph -> ( S _D G ) : X --> CC ) |
21 |
20
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) e. CC ) |
22 |
3
|
feqmptd |
|- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
23 |
22
|
oveq2d |
|- ( ph -> ( S _D G ) = ( S _D ( x e. X |-> ( G ` x ) ) ) ) |
24 |
20
|
feqmptd |
|- ( ph -> ( S _D G ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
25 |
23 24
|
eqtr3d |
|- ( ph -> ( S _D ( x e. X |-> ( G ` x ) ) ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
26 |
1 6 11 15 16 21 25
|
dvmptdiv |
|- ( ph -> ( S _D ( x e. X |-> ( ( F ` x ) / ( G ` x ) ) ) ) = ( x e. X |-> ( ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) - ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) / ( ( G ` x ) ^ 2 ) ) ) ) |
27 |
|
ovex |
|- ( S _D F ) e. _V |
28 |
27
|
dmex |
|- dom ( S _D F ) e. _V |
29 |
4 28
|
eqeltrrdi |
|- ( ph -> X e. _V ) |
30 |
29 6 16 12 22
|
offval2 |
|- ( ph -> ( F oF / G ) = ( x e. X |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
31 |
30
|
oveq2d |
|- ( ph -> ( S _D ( F oF / G ) ) = ( S _D ( x e. X |-> ( ( F ` x ) / ( G ` x ) ) ) ) ) |
32 |
|
ovexd |
|- ( ( ph /\ x e. X ) -> ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) - ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) e. _V ) |
33 |
16
|
eldifad |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) |
34 |
33
|
sqcld |
|- ( ( ph /\ x e. X ) -> ( ( G ` x ) ^ 2 ) e. CC ) |
35 |
11 33
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. ( G ` x ) ) e. CC ) |
36 |
21 6
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D G ) ` x ) x. ( F ` x ) ) e. CC ) |
37 |
29 11 33 14 22
|
offval2 |
|- ( ph -> ( ( S _D F ) oF x. G ) = ( x e. X |-> ( ( ( S _D F ) ` x ) x. ( G ` x ) ) ) ) |
38 |
29 21 6 24 12
|
offval2 |
|- ( ph -> ( ( S _D G ) oF x. F ) = ( x e. X |-> ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
39 |
29 35 36 37 38
|
offval2 |
|- ( ph -> ( ( ( S _D F ) oF x. G ) oF - ( ( S _D G ) oF x. F ) ) = ( x e. X |-> ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) - ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) ) |
40 |
29 16 16 22 22
|
offval2 |
|- ( ph -> ( G oF x. G ) = ( x e. X |-> ( ( G ` x ) x. ( G ` x ) ) ) ) |
41 |
33
|
sqvald |
|- ( ( ph /\ x e. X ) -> ( ( G ` x ) ^ 2 ) = ( ( G ` x ) x. ( G ` x ) ) ) |
42 |
41
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( ( G ` x ) ^ 2 ) ) = ( x e. X |-> ( ( G ` x ) x. ( G ` x ) ) ) ) |
43 |
40 42
|
eqtr4d |
|- ( ph -> ( G oF x. G ) = ( x e. X |-> ( ( G ` x ) ^ 2 ) ) ) |
44 |
29 32 34 39 43
|
offval2 |
|- ( ph -> ( ( ( ( S _D F ) oF x. G ) oF - ( ( S _D G ) oF x. F ) ) oF / ( G oF x. G ) ) = ( x e. X |-> ( ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) - ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) / ( ( G ` x ) ^ 2 ) ) ) ) |
45 |
26 31 44
|
3eqtr4d |
|- ( ph -> ( S _D ( F oF / G ) ) = ( ( ( ( S _D F ) oF x. G ) oF - ( ( S _D G ) oF x. F ) ) oF / ( G oF x. G ) ) ) |