| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdivbd.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvdivbd.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 3 |
|
dvdivbd.adv |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> C ) ) |
| 4 |
|
dvdivbd.c |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
| 5 |
|
dvdivbd.b |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
| 6 |
|
dvdivbd.u |
|- ( ph -> U e. RR ) |
| 7 |
|
dvdivbd.r |
|- ( ph -> R e. RR ) |
| 8 |
|
dvdivbd.t |
|- ( ph -> T e. RR ) |
| 9 |
|
dvdivbd.q |
|- ( ph -> Q e. RR ) |
| 10 |
|
dvdivbd.cbd |
|- ( ( ph /\ x e. X ) -> ( abs ` C ) <_ U ) |
| 11 |
|
dvdivbd.bbd |
|- ( ( ph /\ x e. X ) -> ( abs ` B ) <_ R ) |
| 12 |
|
dvdivbd.dbd |
|- ( ( ph /\ x e. X ) -> ( abs ` D ) <_ T ) |
| 13 |
|
dvdivbd.abd |
|- ( ( ph /\ x e. X ) -> ( abs ` A ) <_ Q ) |
| 14 |
|
dvdivbd.bdv |
|- ( ph -> ( S _D ( x e. X |-> B ) ) = ( x e. X |-> D ) ) |
| 15 |
|
dvdivbd.d |
|- ( ( ph /\ x e. X ) -> D e. CC ) |
| 16 |
|
dvdivbd.e |
|- ( ph -> E e. RR+ ) |
| 17 |
|
dvdivbd.ele |
|- ( ph -> A. x e. X E <_ ( abs ` B ) ) |
| 18 |
|
dvdivbd.f |
|- F = ( S _D ( x e. X |-> ( A / B ) ) ) |
| 19 |
6 7
|
remulcld |
|- ( ph -> ( U x. R ) e. RR ) |
| 20 |
8 9
|
remulcld |
|- ( ph -> ( T x. Q ) e. RR ) |
| 21 |
19 20
|
readdcld |
|- ( ph -> ( ( U x. R ) + ( T x. Q ) ) e. RR ) |
| 22 |
16
|
rpred |
|- ( ph -> E e. RR ) |
| 23 |
22
|
resqcld |
|- ( ph -> ( E ^ 2 ) e. RR ) |
| 24 |
16
|
rpcnd |
|- ( ph -> E e. CC ) |
| 25 |
16
|
rpgt0d |
|- ( ph -> 0 < E ) |
| 26 |
25
|
gt0ne0d |
|- ( ph -> E =/= 0 ) |
| 27 |
|
2z |
|- 2 e. ZZ |
| 28 |
27
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 29 |
24 26 28
|
expne0d |
|- ( ph -> ( E ^ 2 ) =/= 0 ) |
| 30 |
21 23 29
|
redivcld |
|- ( ph -> ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) e. RR ) |
| 31 |
|
simpr |
|- ( ( ( ph /\ x e. X ) /\ B = 0 ) -> B = 0 ) |
| 32 |
31
|
abs00bd |
|- ( ( ( ph /\ x e. X ) /\ B = 0 ) -> ( abs ` B ) = 0 ) |
| 33 |
|
0red |
|- ( ( ph /\ x e. X ) -> 0 e. RR ) |
| 34 |
22
|
adantr |
|- ( ( ph /\ x e. X ) -> E e. RR ) |
| 35 |
5
|
abscld |
|- ( ( ph /\ x e. X ) -> ( abs ` B ) e. RR ) |
| 36 |
25
|
adantr |
|- ( ( ph /\ x e. X ) -> 0 < E ) |
| 37 |
17
|
r19.21bi |
|- ( ( ph /\ x e. X ) -> E <_ ( abs ` B ) ) |
| 38 |
33 34 35 36 37
|
ltletrd |
|- ( ( ph /\ x e. X ) -> 0 < ( abs ` B ) ) |
| 39 |
38
|
gt0ne0d |
|- ( ( ph /\ x e. X ) -> ( abs ` B ) =/= 0 ) |
| 40 |
39
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ B = 0 ) -> ( abs ` B ) =/= 0 ) |
| 41 |
40
|
neneqd |
|- ( ( ( ph /\ x e. X ) /\ B = 0 ) -> -. ( abs ` B ) = 0 ) |
| 42 |
32 41
|
pm2.65da |
|- ( ( ph /\ x e. X ) -> -. B = 0 ) |
| 43 |
42
|
neqned |
|- ( ( ph /\ x e. X ) -> B =/= 0 ) |
| 44 |
|
eldifsn |
|- ( B e. ( CC \ { 0 } ) <-> ( B e. CC /\ B =/= 0 ) ) |
| 45 |
5 43 44
|
sylanbrc |
|- ( ( ph /\ x e. X ) -> B e. ( CC \ { 0 } ) ) |
| 46 |
1 2 4 3 45 15 14
|
dvmptdiv |
|- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) ) |
| 47 |
18 46
|
eqtrid |
|- ( ph -> F = ( x e. X |-> ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) ) |
| 48 |
4 5
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( C x. B ) e. CC ) |
| 49 |
15 2
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( D x. A ) e. CC ) |
| 50 |
48 49
|
subcld |
|- ( ( ph /\ x e. X ) -> ( ( C x. B ) - ( D x. A ) ) e. CC ) |
| 51 |
5
|
sqcld |
|- ( ( ph /\ x e. X ) -> ( B ^ 2 ) e. CC ) |
| 52 |
|
sqne0 |
|- ( B e. CC -> ( ( B ^ 2 ) =/= 0 <-> B =/= 0 ) ) |
| 53 |
5 52
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( B ^ 2 ) =/= 0 <-> B =/= 0 ) ) |
| 54 |
43 53
|
mpbird |
|- ( ( ph /\ x e. X ) -> ( B ^ 2 ) =/= 0 ) |
| 55 |
50 51 54
|
divcld |
|- ( ( ph /\ x e. X ) -> ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) e. CC ) |
| 56 |
47 55
|
fvmpt2d |
|- ( ( ph /\ x e. X ) -> ( F ` x ) = ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) |
| 57 |
56
|
fveq2d |
|- ( ( ph /\ x e. X ) -> ( abs ` ( F ` x ) ) = ( abs ` ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) ) |
| 58 |
50 51 54
|
absdivd |
|- ( ( ph /\ x e. X ) -> ( abs ` ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) = ( ( abs ` ( ( C x. B ) - ( D x. A ) ) ) / ( abs ` ( B ^ 2 ) ) ) ) |
| 59 |
50
|
abscld |
|- ( ( ph /\ x e. X ) -> ( abs ` ( ( C x. B ) - ( D x. A ) ) ) e. RR ) |
| 60 |
21
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( U x. R ) + ( T x. Q ) ) e. RR ) |
| 61 |
16
|
adantr |
|- ( ( ph /\ x e. X ) -> E e. RR+ ) |
| 62 |
27
|
a1i |
|- ( ( ph /\ x e. X ) -> 2 e. ZZ ) |
| 63 |
61 62
|
rpexpcld |
|- ( ( ph /\ x e. X ) -> ( E ^ 2 ) e. RR+ ) |
| 64 |
51
|
abscld |
|- ( ( ph /\ x e. X ) -> ( abs ` ( B ^ 2 ) ) e. RR ) |
| 65 |
50
|
absge0d |
|- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` ( ( C x. B ) - ( D x. A ) ) ) ) |
| 66 |
48
|
abscld |
|- ( ( ph /\ x e. X ) -> ( abs ` ( C x. B ) ) e. RR ) |
| 67 |
49
|
abscld |
|- ( ( ph /\ x e. X ) -> ( abs ` ( D x. A ) ) e. RR ) |
| 68 |
66 67
|
readdcld |
|- ( ( ph /\ x e. X ) -> ( ( abs ` ( C x. B ) ) + ( abs ` ( D x. A ) ) ) e. RR ) |
| 69 |
48 49
|
abs2dif2d |
|- ( ( ph /\ x e. X ) -> ( abs ` ( ( C x. B ) - ( D x. A ) ) ) <_ ( ( abs ` ( C x. B ) ) + ( abs ` ( D x. A ) ) ) ) |
| 70 |
19
|
adantr |
|- ( ( ph /\ x e. X ) -> ( U x. R ) e. RR ) |
| 71 |
20
|
adantr |
|- ( ( ph /\ x e. X ) -> ( T x. Q ) e. RR ) |
| 72 |
4 5
|
absmuld |
|- ( ( ph /\ x e. X ) -> ( abs ` ( C x. B ) ) = ( ( abs ` C ) x. ( abs ` B ) ) ) |
| 73 |
4
|
abscld |
|- ( ( ph /\ x e. X ) -> ( abs ` C ) e. RR ) |
| 74 |
6
|
adantr |
|- ( ( ph /\ x e. X ) -> U e. RR ) |
| 75 |
7
|
adantr |
|- ( ( ph /\ x e. X ) -> R e. RR ) |
| 76 |
4
|
absge0d |
|- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` C ) ) |
| 77 |
5
|
absge0d |
|- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` B ) ) |
| 78 |
73 74 35 75 76 77 10 11
|
lemul12ad |
|- ( ( ph /\ x e. X ) -> ( ( abs ` C ) x. ( abs ` B ) ) <_ ( U x. R ) ) |
| 79 |
72 78
|
eqbrtrd |
|- ( ( ph /\ x e. X ) -> ( abs ` ( C x. B ) ) <_ ( U x. R ) ) |
| 80 |
15 2
|
absmuld |
|- ( ( ph /\ x e. X ) -> ( abs ` ( D x. A ) ) = ( ( abs ` D ) x. ( abs ` A ) ) ) |
| 81 |
15
|
abscld |
|- ( ( ph /\ x e. X ) -> ( abs ` D ) e. RR ) |
| 82 |
8
|
adantr |
|- ( ( ph /\ x e. X ) -> T e. RR ) |
| 83 |
2
|
abscld |
|- ( ( ph /\ x e. X ) -> ( abs ` A ) e. RR ) |
| 84 |
9
|
adantr |
|- ( ( ph /\ x e. X ) -> Q e. RR ) |
| 85 |
15
|
absge0d |
|- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` D ) ) |
| 86 |
2
|
absge0d |
|- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` A ) ) |
| 87 |
81 82 83 84 85 86 12 13
|
lemul12ad |
|- ( ( ph /\ x e. X ) -> ( ( abs ` D ) x. ( abs ` A ) ) <_ ( T x. Q ) ) |
| 88 |
80 87
|
eqbrtrd |
|- ( ( ph /\ x e. X ) -> ( abs ` ( D x. A ) ) <_ ( T x. Q ) ) |
| 89 |
66 67 70 71 79 88
|
le2addd |
|- ( ( ph /\ x e. X ) -> ( ( abs ` ( C x. B ) ) + ( abs ` ( D x. A ) ) ) <_ ( ( U x. R ) + ( T x. Q ) ) ) |
| 90 |
59 68 60 69 89
|
letrd |
|- ( ( ph /\ x e. X ) -> ( abs ` ( ( C x. B ) - ( D x. A ) ) ) <_ ( ( U x. R ) + ( T x. Q ) ) ) |
| 91 |
|
2nn0 |
|- 2 e. NN0 |
| 92 |
91
|
a1i |
|- ( ( ph /\ x e. X ) -> 2 e. NN0 ) |
| 93 |
33 34 36
|
ltled |
|- ( ( ph /\ x e. X ) -> 0 <_ E ) |
| 94 |
|
leexp1a |
|- ( ( ( E e. RR /\ ( abs ` B ) e. RR /\ 2 e. NN0 ) /\ ( 0 <_ E /\ E <_ ( abs ` B ) ) ) -> ( E ^ 2 ) <_ ( ( abs ` B ) ^ 2 ) ) |
| 95 |
34 35 92 93 37 94
|
syl32anc |
|- ( ( ph /\ x e. X ) -> ( E ^ 2 ) <_ ( ( abs ` B ) ^ 2 ) ) |
| 96 |
5 92
|
absexpd |
|- ( ( ph /\ x e. X ) -> ( abs ` ( B ^ 2 ) ) = ( ( abs ` B ) ^ 2 ) ) |
| 97 |
95 96
|
breqtrrd |
|- ( ( ph /\ x e. X ) -> ( E ^ 2 ) <_ ( abs ` ( B ^ 2 ) ) ) |
| 98 |
59 60 63 64 65 90 97
|
lediv12ad |
|- ( ( ph /\ x e. X ) -> ( ( abs ` ( ( C x. B ) - ( D x. A ) ) ) / ( abs ` ( B ^ 2 ) ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) |
| 99 |
58 98
|
eqbrtrd |
|- ( ( ph /\ x e. X ) -> ( abs ` ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) |
| 100 |
57 99
|
eqbrtrd |
|- ( ( ph /\ x e. X ) -> ( abs ` ( F ` x ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) |
| 101 |
100
|
ralrimiva |
|- ( ph -> A. x e. X ( abs ` ( F ` x ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) |
| 102 |
|
brralrspcev |
|- ( ( ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) e. RR /\ A. x e. X ( abs ` ( F ` x ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) -> E. b e. RR A. x e. X ( abs ` ( F ` x ) ) <_ b ) |
| 103 |
30 101 102
|
syl2anc |
|- ( ph -> E. b e. RR A. x e. X ( abs ` ( F ` x ) ) <_ b ) |