| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdivbd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvdivbd.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 3 |
|
dvdivbd.adv |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
| 4 |
|
dvdivbd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 5 |
|
dvdivbd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 6 |
|
dvdivbd.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 7 |
|
dvdivbd.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 8 |
|
dvdivbd.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 9 |
|
dvdivbd.q |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 10 |
|
dvdivbd.cbd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐶 ) ≤ 𝑈 ) |
| 11 |
|
dvdivbd.bbd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) |
| 12 |
|
dvdivbd.dbd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐷 ) ≤ 𝑇 ) |
| 13 |
|
dvdivbd.abd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐴 ) ≤ 𝑄 ) |
| 14 |
|
dvdivbd.bdv |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
| 15 |
|
dvdivbd.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ℂ ) |
| 16 |
|
dvdivbd.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 17 |
|
dvdivbd.ele |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐸 ≤ ( abs ‘ 𝐵 ) ) |
| 18 |
|
dvdivbd.f |
⊢ 𝐹 = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) |
| 19 |
6 7
|
remulcld |
⊢ ( 𝜑 → ( 𝑈 · 𝑅 ) ∈ ℝ ) |
| 20 |
8 9
|
remulcld |
⊢ ( 𝜑 → ( 𝑇 · 𝑄 ) ∈ ℝ ) |
| 21 |
19 20
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) ∈ ℝ ) |
| 22 |
16
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 23 |
22
|
resqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 24 |
16
|
rpcnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 25 |
16
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
| 26 |
25
|
gt0ne0d |
⊢ ( 𝜑 → 𝐸 ≠ 0 ) |
| 27 |
|
2z |
⊢ 2 ∈ ℤ |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 29 |
24 26 28
|
expne0d |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ≠ 0 ) |
| 30 |
21 23 29
|
redivcld |
⊢ ( 𝜑 → ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ∈ ℝ ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
| 32 |
31
|
abs00bd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝐵 = 0 ) → ( abs ‘ 𝐵 ) = 0 ) |
| 33 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℝ ) |
| 34 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ ℝ ) |
| 35 |
5
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 36 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 < 𝐸 ) |
| 37 |
17
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ≤ ( abs ‘ 𝐵 ) ) |
| 38 |
33 34 35 36 37
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 < ( abs ‘ 𝐵 ) ) |
| 39 |
38
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐵 ) ≠ 0 ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝐵 = 0 ) → ( abs ‘ 𝐵 ) ≠ 0 ) |
| 41 |
40
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝐵 = 0 ) → ¬ ( abs ‘ 𝐵 ) = 0 ) |
| 42 |
32 41
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝐵 = 0 ) |
| 43 |
42
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ≠ 0 ) |
| 44 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 45 |
5 43 44
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
| 46 |
1 2 4 3 45 15 14
|
dvmptdiv |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) ) |
| 47 |
18 46
|
eqtrid |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) ) |
| 48 |
4 5
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 49 |
15 2
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 50 |
48 49
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 51 |
5
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 52 |
|
sqne0 |
⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ↑ 2 ) ≠ 0 ↔ 𝐵 ≠ 0 ) ) |
| 53 |
5 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 ↑ 2 ) ≠ 0 ↔ 𝐵 ≠ 0 ) ) |
| 54 |
43 53
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ↑ 2 ) ≠ 0 ) |
| 55 |
50 51 54
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 56 |
47 55
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) |
| 57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) ) |
| 58 |
50 51 54
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) = ( ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) / ( abs ‘ ( 𝐵 ↑ 2 ) ) ) ) |
| 59 |
50
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) ∈ ℝ ) |
| 60 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) ∈ ℝ ) |
| 61 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ ℝ+ ) |
| 62 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 2 ∈ ℤ ) |
| 63 |
61 62
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ↑ 2 ) ∈ ℝ+ ) |
| 64 |
51
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 65 |
50
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) ) |
| 66 |
48
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ℝ ) |
| 67 |
49
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐷 · 𝐴 ) ) ∈ ℝ ) |
| 68 |
66 67
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ ( 𝐶 · 𝐵 ) ) + ( abs ‘ ( 𝐷 · 𝐴 ) ) ) ∈ ℝ ) |
| 69 |
48 49
|
abs2dif2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) ≤ ( ( abs ‘ ( 𝐶 · 𝐵 ) ) + ( abs ‘ ( 𝐷 · 𝐴 ) ) ) ) |
| 70 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑈 · 𝑅 ) ∈ ℝ ) |
| 71 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 · 𝑄 ) ∈ ℝ ) |
| 72 |
4 5
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) = ( ( abs ‘ 𝐶 ) · ( abs ‘ 𝐵 ) ) ) |
| 73 |
4
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 74 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑈 ∈ ℝ ) |
| 75 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ ) |
| 76 |
4
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐶 ) ) |
| 77 |
5
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 78 |
73 74 35 75 76 77 10 11
|
lemul12ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝐶 ) · ( abs ‘ 𝐵 ) ) ≤ ( 𝑈 · 𝑅 ) ) |
| 79 |
72 78
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ≤ ( 𝑈 · 𝑅 ) ) |
| 80 |
15 2
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐷 · 𝐴 ) ) = ( ( abs ‘ 𝐷 ) · ( abs ‘ 𝐴 ) ) ) |
| 81 |
15
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐷 ) ∈ ℝ ) |
| 82 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑇 ∈ ℝ ) |
| 83 |
2
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 84 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑄 ∈ ℝ ) |
| 85 |
15
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐷 ) ) |
| 86 |
2
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 87 |
81 82 83 84 85 86 12 13
|
lemul12ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝐷 ) · ( abs ‘ 𝐴 ) ) ≤ ( 𝑇 · 𝑄 ) ) |
| 88 |
80 87
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐷 · 𝐴 ) ) ≤ ( 𝑇 · 𝑄 ) ) |
| 89 |
66 67 70 71 79 88
|
le2addd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ ( 𝐶 · 𝐵 ) ) + ( abs ‘ ( 𝐷 · 𝐴 ) ) ) ≤ ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) ) |
| 90 |
59 68 60 69 89
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) ≤ ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) ) |
| 91 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 92 |
91
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 2 ∈ ℕ0 ) |
| 93 |
33 34 36
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ 𝐸 ) |
| 94 |
|
leexp1a |
⊢ ( ( ( 𝐸 ∈ ℝ ∧ ( abs ‘ 𝐵 ) ∈ ℝ ∧ 2 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐸 ∧ 𝐸 ≤ ( abs ‘ 𝐵 ) ) ) → ( 𝐸 ↑ 2 ) ≤ ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 95 |
34 35 92 93 37 94
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ↑ 2 ) ≤ ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 96 |
5 92
|
absexpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 97 |
95 96
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ↑ 2 ) ≤ ( abs ‘ ( 𝐵 ↑ 2 ) ) ) |
| 98 |
59 60 63 64 65 90 97
|
lediv12ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) / ( abs ‘ ( 𝐵 ↑ 2 ) ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) |
| 99 |
58 98
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) |
| 100 |
57 99
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) |
| 101 |
100
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) |
| 102 |
|
brralrspcev |
⊢ ( ( ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ∈ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 103 |
30 101 102
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |