| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptrecl.s |
|- ( ph -> S C_ RR ) |
| 2 |
|
dvmptrecl.a |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
| 3 |
|
dvmptrecl.v |
|- ( ( ph /\ x e. S ) -> B e. V ) |
| 4 |
|
dvmptrecl.b |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
| 5 |
2
|
fmpttd |
|- ( ph -> ( x e. S |-> A ) : S --> RR ) |
| 6 |
|
dvfre |
|- ( ( ( x e. S |-> A ) : S --> RR /\ S C_ RR ) -> ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR ) |
| 7 |
5 1 6
|
syl2anc |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR ) |
| 8 |
4
|
dmeqd |
|- ( ph -> dom ( RR _D ( x e. S |-> A ) ) = dom ( x e. S |-> B ) ) |
| 9 |
3
|
ralrimiva |
|- ( ph -> A. x e. S B e. V ) |
| 10 |
|
dmmptg |
|- ( A. x e. S B e. V -> dom ( x e. S |-> B ) = S ) |
| 11 |
9 10
|
syl |
|- ( ph -> dom ( x e. S |-> B ) = S ) |
| 12 |
8 11
|
eqtrd |
|- ( ph -> dom ( RR _D ( x e. S |-> A ) ) = S ) |
| 13 |
4 12
|
feq12d |
|- ( ph -> ( ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR <-> ( x e. S |-> B ) : S --> RR ) ) |
| 14 |
7 13
|
mpbid |
|- ( ph -> ( x e. S |-> B ) : S --> RR ) |
| 15 |
14
|
fvmptelcdm |
|- ( ( ph /\ x e. S ) -> B e. RR ) |