Metamath Proof Explorer


Theorem dvfsumrlimf

Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s
|- S = ( T (,) +oo )
dvfsum.z
|- Z = ( ZZ>= ` M )
dvfsum.m
|- ( ph -> M e. ZZ )
dvfsum.d
|- ( ph -> D e. RR )
dvfsum.md
|- ( ph -> M <_ ( D + 1 ) )
dvfsum.t
|- ( ph -> T e. RR )
dvfsum.a
|- ( ( ph /\ x e. S ) -> A e. RR )
dvfsum.b1
|- ( ( ph /\ x e. S ) -> B e. V )
dvfsum.b2
|- ( ( ph /\ x e. Z ) -> B e. RR )
dvfsum.b3
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) )
dvfsum.c
|- ( x = k -> B = C )
dvfsumrlimf.g
|- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) )
Assertion dvfsumrlimf
|- ( ph -> G : S --> RR )

Proof

Step Hyp Ref Expression
1 dvfsum.s
 |-  S = ( T (,) +oo )
2 dvfsum.z
 |-  Z = ( ZZ>= ` M )
3 dvfsum.m
 |-  ( ph -> M e. ZZ )
4 dvfsum.d
 |-  ( ph -> D e. RR )
5 dvfsum.md
 |-  ( ph -> M <_ ( D + 1 ) )
6 dvfsum.t
 |-  ( ph -> T e. RR )
7 dvfsum.a
 |-  ( ( ph /\ x e. S ) -> A e. RR )
8 dvfsum.b1
 |-  ( ( ph /\ x e. S ) -> B e. V )
9 dvfsum.b2
 |-  ( ( ph /\ x e. Z ) -> B e. RR )
10 dvfsum.b3
 |-  ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) )
11 dvfsum.c
 |-  ( x = k -> B = C )
12 dvfsumrlimf.g
 |-  G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) )
13 fzfid
 |-  ( ( ph /\ x e. S ) -> ( M ... ( |_ ` x ) ) e. Fin )
14 9 ralrimiva
 |-  ( ph -> A. x e. Z B e. RR )
15 14 adantr
 |-  ( ( ph /\ x e. S ) -> A. x e. Z B e. RR )
16 elfzuz
 |-  ( k e. ( M ... ( |_ ` x ) ) -> k e. ( ZZ>= ` M ) )
17 16 2 eleqtrrdi
 |-  ( k e. ( M ... ( |_ ` x ) ) -> k e. Z )
18 11 eleq1d
 |-  ( x = k -> ( B e. RR <-> C e. RR ) )
19 18 rspccva
 |-  ( ( A. x e. Z B e. RR /\ k e. Z ) -> C e. RR )
20 15 17 19 syl2an
 |-  ( ( ( ph /\ x e. S ) /\ k e. ( M ... ( |_ ` x ) ) ) -> C e. RR )
21 13 20 fsumrecl
 |-  ( ( ph /\ x e. S ) -> sum_ k e. ( M ... ( |_ ` x ) ) C e. RR )
22 21 7 resubcld
 |-  ( ( ph /\ x e. S ) -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) e. RR )
23 22 12 fmptd
 |-  ( ph -> G : S --> RR )