Metamath Proof Explorer


Theorem dvfsumrlimf

Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S=T+∞
dvfsum.z Z=M
dvfsum.m φM
dvfsum.d φD
dvfsum.md φMD+1
dvfsum.t φT
dvfsum.a φxSA
dvfsum.b1 φxSBV
dvfsum.b2 φxZB
dvfsum.b3 φdxSAdx=xSB
dvfsum.c x=kB=C
dvfsumrlimf.g G=xSk=MxCA
Assertion dvfsumrlimf φG:S

Proof

Step Hyp Ref Expression
1 dvfsum.s S=T+∞
2 dvfsum.z Z=M
3 dvfsum.m φM
4 dvfsum.d φD
5 dvfsum.md φMD+1
6 dvfsum.t φT
7 dvfsum.a φxSA
8 dvfsum.b1 φxSBV
9 dvfsum.b2 φxZB
10 dvfsum.b3 φdxSAdx=xSB
11 dvfsum.c x=kB=C
12 dvfsumrlimf.g G=xSk=MxCA
13 fzfid φxSMxFin
14 9 ralrimiva φxZB
15 14 adantr φxSxZB
16 elfzuz kMxkM
17 16 2 eleqtrrdi kMxkZ
18 11 eleq1d x=kBC
19 18 rspccva xZBkZC
20 15 17 19 syl2an φxSkMxC
21 13 20 fsumrecl φxSk=MxC
22 21 7 resubcld φxSk=MxCA
23 22 12 fmptd φG:S