| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
| 2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
| 12 |
|
dvfsumrlimf.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) |
| 13 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 14 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 16 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 |
16 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ 𝑍 ) |
| 18 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 19 |
18
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 20 |
15 17 19
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
| 21 |
13 20
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 ∈ ℝ ) |
| 22 |
21 7
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ∈ ℝ ) |
| 23 |
22 12
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |