| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
| 2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
| 12 |
|
dvfsum.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) |
| 13 |
|
dvfsum.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
| 14 |
|
dvfsum.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) |
| 15 |
|
dvfsumlem1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 16 |
|
dvfsumlem1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 17 |
|
dvfsumlem1.3 |
⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) |
| 18 |
|
dvfsumlem1.4 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
| 19 |
|
dvfsumlem1.5 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) |
| 20 |
|
dvfsumlem1.6 |
⊢ ( 𝜑 → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 21 |
|
ioossre |
⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ |
| 22 |
1 21
|
eqsstri |
⊢ 𝑆 ⊆ ℝ |
| 23 |
22 16
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 24 |
22 15
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 25 |
24
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℤ ) |
| 26 |
|
reflcl |
⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
| 27 |
24 26
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
| 28 |
|
flle |
⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) |
| 29 |
24 28
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) |
| 30 |
27 24 23 29 18
|
letrd |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ) |
| 31 |
|
flbi |
⊢ ( ( 𝑌 ∈ ℝ ∧ ( ⌊ ‘ 𝑋 ) ∈ ℤ ) → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ ( ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) |
| 32 |
31
|
baibd |
⊢ ( ( ( 𝑌 ∈ ℝ ∧ ( ⌊ ‘ 𝑋 ) ∈ ℤ ) ∧ ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 33 |
23 25 30 32
|
syl21anc |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 34 |
33
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) = ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ) |
| 36 |
35
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 37 |
34
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) |
| 38 |
37
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) |
| 39 |
38
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 40 |
36 39
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 42 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑋 ∈ ℝ ) |
| 43 |
42
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑋 ) ∈ ℤ ) |
| 44 |
43
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
| 45 |
41 44
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ∈ ℤ ) |
| 46 |
|
flid |
⊢ ( 𝑌 ∈ ℤ → ( ⌊ ‘ 𝑌 ) = 𝑌 ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = 𝑌 ) |
| 48 |
47 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 49 |
48
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) = ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 50 |
49
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 51 |
23
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 52 |
27
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℂ ) |
| 53 |
51 52
|
subcld |
⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℂ ) |
| 54 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 55 |
22
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 56 |
55 7 8 10
|
dvmptrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 57 |
56
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
| 58 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℂ ) |
| 59 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐵 |
| 60 |
59
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 61 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑌 → 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑥 = 𝑌 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 63 |
60 62
|
rspc |
⊢ ( 𝑌 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℂ → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 64 |
16 58 63
|
sylc |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 65 |
53 54 64
|
subdird |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 66 |
51 52 54
|
subsub4d |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) = ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 67 |
66
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 68 |
64
|
mullidd |
⊢ ( 𝜑 → ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 70 |
65 67 69
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 72 |
50 71
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 73 |
25
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
| 74 |
3
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 75 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
| 76 |
74 75
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 77 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 78 |
74 77 4
|
lesubaddd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ 𝐷 ↔ 𝑀 ≤ ( 𝐷 + 1 ) ) ) |
| 79 |
5 78
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ 𝐷 ) |
| 80 |
76 4 24 79 17
|
letrd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ 𝑋 ) |
| 81 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
| 82 |
3 81
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
| 83 |
|
flge |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) ≤ 𝑋 ↔ ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) ) |
| 84 |
24 82 83
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ 𝑋 ↔ ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) ) |
| 85 |
80 84
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) |
| 86 |
74 77 27
|
lesubaddd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ↔ 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 87 |
85 86
|
mpbid |
⊢ ( 𝜑 → 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 88 |
|
eluz2 |
⊢ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 89 |
3 73 87 88
|
syl3anbrc |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 90 |
9
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 91 |
90
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℂ ) |
| 92 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 93 |
92 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑘 ∈ 𝑍 ) |
| 94 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 95 |
94
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℂ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℂ ) |
| 96 |
91 93 95
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) → 𝐶 ∈ ℂ ) |
| 97 |
|
eqvisset |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ V ) |
| 98 |
|
eqeq2 |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( 𝑥 = 𝑘 ↔ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 99 |
98
|
biimpar |
⊢ ( ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ∧ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑥 = 𝑘 ) |
| 100 |
99 11
|
syl |
⊢ ( ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ∧ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝐵 = 𝐶 ) |
| 101 |
97 100
|
csbied |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 102 |
101
|
eqcomd |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → 𝐶 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
| 103 |
89 96 102
|
fsumm1 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 104 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 105 |
|
pncan |
⊢ ( ( ( ⌊ ‘ 𝑋 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑋 ) ) |
| 106 |
52 104 105
|
sylancl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑋 ) ) |
| 107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) |
| 108 |
107
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) |
| 109 |
108
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 110 |
103 109
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 112 |
48
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) = ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 113 |
112
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 ) |
| 114 |
41
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
| 115 |
114
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 116 |
111 113 115
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 117 |
116
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 118 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ∈ Fin ) |
| 119 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 120 |
119 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ 𝑍 ) |
| 121 |
91 120 95
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐶 ∈ ℂ ) |
| 122 |
118 121
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ∈ ℂ ) |
| 123 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℂ ) |
| 124 |
123
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℂ ) |
| 125 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐴 |
| 126 |
125
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ |
| 127 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑌 → 𝐴 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
| 128 |
127
|
eleq1d |
⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 129 |
126 128
|
rspc |
⊢ ( 𝑌 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℂ → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 130 |
16 124 129
|
sylc |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 131 |
122 64 130
|
addsubd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 133 |
117 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 134 |
72 133
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 135 |
53 64
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 137 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 138 |
122 130
|
subcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 140 |
136 137 139
|
nppcan3d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 141 |
134 140
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 142 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑋 ) ∈ ℝ → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
| 143 |
27 142
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
| 144 |
23 143
|
leloed |
⊢ ( 𝜑 → ( 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ↔ ( 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ∨ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) |
| 145 |
20 144
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ∨ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 146 |
40 141 145
|
mpjaodan |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 147 |
|
ovex |
⊢ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ∈ V |
| 148 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
| 149 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) |
| 150 |
|
nfcv |
⊢ Ⅎ 𝑥 · |
| 151 |
149 150 59
|
nfov |
⊢ Ⅎ 𝑥 ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 152 |
|
nfcv |
⊢ Ⅎ 𝑥 + |
| 153 |
|
nfcv |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 |
| 154 |
|
nfcv |
⊢ Ⅎ 𝑥 − |
| 155 |
153 154 125
|
nfov |
⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
| 156 |
151 152 155
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 157 |
|
id |
⊢ ( 𝑥 = 𝑌 → 𝑥 = 𝑌 ) |
| 158 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 𝑌 ) ) |
| 159 |
157 158
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) = ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ) |
| 160 |
159 61
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) = ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 161 |
158
|
oveq2d |
⊢ ( 𝑥 = 𝑌 → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) ) |
| 162 |
161
|
sumeq1d |
⊢ ( 𝑥 = 𝑌 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 ) |
| 163 |
162 127
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 164 |
160 163
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 165 |
148 156 164 14
|
fvmptf |
⊢ ( ( 𝑌 ∈ 𝑆 ∧ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ∈ V ) → ( 𝐻 ‘ 𝑌 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 166 |
16 147 165
|
sylancl |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 167 |
135 130 122
|
subadd23d |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 168 |
146 166 167
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |