| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsum.s |
|- S = ( T (,) +oo ) |
| 2 |
|
dvfsum.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
dvfsum.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
dvfsum.d |
|- ( ph -> D e. RR ) |
| 5 |
|
dvfsum.md |
|- ( ph -> M <_ ( D + 1 ) ) |
| 6 |
|
dvfsum.t |
|- ( ph -> T e. RR ) |
| 7 |
|
dvfsum.a |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
| 8 |
|
dvfsum.b1 |
|- ( ( ph /\ x e. S ) -> B e. V ) |
| 9 |
|
dvfsum.b2 |
|- ( ( ph /\ x e. Z ) -> B e. RR ) |
| 10 |
|
dvfsum.b3 |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
| 11 |
|
dvfsum.c |
|- ( x = k -> B = C ) |
| 12 |
|
dvfsum.u |
|- ( ph -> U e. RR* ) |
| 13 |
|
dvfsum.l |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> C <_ B ) |
| 14 |
|
dvfsum.h |
|- H = ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) ) |
| 15 |
|
dvfsumlem1.1 |
|- ( ph -> X e. S ) |
| 16 |
|
dvfsumlem1.2 |
|- ( ph -> Y e. S ) |
| 17 |
|
dvfsumlem1.3 |
|- ( ph -> D <_ X ) |
| 18 |
|
dvfsumlem1.4 |
|- ( ph -> X <_ Y ) |
| 19 |
|
dvfsumlem1.5 |
|- ( ph -> Y <_ U ) |
| 20 |
|
dvfsumlem1.6 |
|- ( ph -> Y <_ ( ( |_ ` X ) + 1 ) ) |
| 21 |
|
ioossre |
|- ( T (,) +oo ) C_ RR |
| 22 |
1 21
|
eqsstri |
|- S C_ RR |
| 23 |
22 16
|
sselid |
|- ( ph -> Y e. RR ) |
| 24 |
22 15
|
sselid |
|- ( ph -> X e. RR ) |
| 25 |
24
|
flcld |
|- ( ph -> ( |_ ` X ) e. ZZ ) |
| 26 |
|
reflcl |
|- ( X e. RR -> ( |_ ` X ) e. RR ) |
| 27 |
24 26
|
syl |
|- ( ph -> ( |_ ` X ) e. RR ) |
| 28 |
|
flle |
|- ( X e. RR -> ( |_ ` X ) <_ X ) |
| 29 |
24 28
|
syl |
|- ( ph -> ( |_ ` X ) <_ X ) |
| 30 |
27 24 23 29 18
|
letrd |
|- ( ph -> ( |_ ` X ) <_ Y ) |
| 31 |
|
flbi |
|- ( ( Y e. RR /\ ( |_ ` X ) e. ZZ ) -> ( ( |_ ` Y ) = ( |_ ` X ) <-> ( ( |_ ` X ) <_ Y /\ Y < ( ( |_ ` X ) + 1 ) ) ) ) |
| 32 |
31
|
baibd |
|- ( ( ( Y e. RR /\ ( |_ ` X ) e. ZZ ) /\ ( |_ ` X ) <_ Y ) -> ( ( |_ ` Y ) = ( |_ ` X ) <-> Y < ( ( |_ ` X ) + 1 ) ) ) |
| 33 |
23 25 30 32
|
syl21anc |
|- ( ph -> ( ( |_ ` Y ) = ( |_ ` X ) <-> Y < ( ( |_ ` X ) + 1 ) ) ) |
| 34 |
33
|
biimpar |
|- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( |_ ` Y ) = ( |_ ` X ) ) |
| 35 |
34
|
oveq2d |
|- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( Y - ( |_ ` Y ) ) = ( Y - ( |_ ` X ) ) ) |
| 36 |
35
|
oveq1d |
|- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) = ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) ) |
| 37 |
34
|
oveq2d |
|- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( M ... ( |_ ` Y ) ) = ( M ... ( |_ ` X ) ) ) |
| 38 |
37
|
sumeq1d |
|- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> sum_ k e. ( M ... ( |_ ` Y ) ) C = sum_ k e. ( M ... ( |_ ` X ) ) C ) |
| 39 |
38
|
oveq1d |
|- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) |
| 40 |
36 39
|
oveq12d |
|- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 41 |
|
simpr |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> Y = ( ( |_ ` X ) + 1 ) ) |
| 42 |
24
|
adantr |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> X e. RR ) |
| 43 |
42
|
flcld |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( |_ ` X ) e. ZZ ) |
| 44 |
43
|
peano2zd |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( |_ ` X ) + 1 ) e. ZZ ) |
| 45 |
41 44
|
eqeltrd |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> Y e. ZZ ) |
| 46 |
|
flid |
|- ( Y e. ZZ -> ( |_ ` Y ) = Y ) |
| 47 |
45 46
|
syl |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( |_ ` Y ) = Y ) |
| 48 |
47 41
|
eqtrd |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( |_ ` Y ) = ( ( |_ ` X ) + 1 ) ) |
| 49 |
48
|
oveq2d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( Y - ( |_ ` Y ) ) = ( Y - ( ( |_ ` X ) + 1 ) ) ) |
| 50 |
49
|
oveq1d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) = ( ( Y - ( ( |_ ` X ) + 1 ) ) x. [_ Y / x ]_ B ) ) |
| 51 |
23
|
recnd |
|- ( ph -> Y e. CC ) |
| 52 |
27
|
recnd |
|- ( ph -> ( |_ ` X ) e. CC ) |
| 53 |
51 52
|
subcld |
|- ( ph -> ( Y - ( |_ ` X ) ) e. CC ) |
| 54 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 55 |
22
|
a1i |
|- ( ph -> S C_ RR ) |
| 56 |
55 7 8 10
|
dvmptrecl |
|- ( ( ph /\ x e. S ) -> B e. RR ) |
| 57 |
56
|
recnd |
|- ( ( ph /\ x e. S ) -> B e. CC ) |
| 58 |
57
|
ralrimiva |
|- ( ph -> A. x e. S B e. CC ) |
| 59 |
|
nfcsb1v |
|- F/_ x [_ Y / x ]_ B |
| 60 |
59
|
nfel1 |
|- F/ x [_ Y / x ]_ B e. CC |
| 61 |
|
csbeq1a |
|- ( x = Y -> B = [_ Y / x ]_ B ) |
| 62 |
61
|
eleq1d |
|- ( x = Y -> ( B e. CC <-> [_ Y / x ]_ B e. CC ) ) |
| 63 |
60 62
|
rspc |
|- ( Y e. S -> ( A. x e. S B e. CC -> [_ Y / x ]_ B e. CC ) ) |
| 64 |
16 58 63
|
sylc |
|- ( ph -> [_ Y / x ]_ B e. CC ) |
| 65 |
53 54 64
|
subdird |
|- ( ph -> ( ( ( Y - ( |_ ` X ) ) - 1 ) x. [_ Y / x ]_ B ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - ( 1 x. [_ Y / x ]_ B ) ) ) |
| 66 |
51 52 54
|
subsub4d |
|- ( ph -> ( ( Y - ( |_ ` X ) ) - 1 ) = ( Y - ( ( |_ ` X ) + 1 ) ) ) |
| 67 |
66
|
oveq1d |
|- ( ph -> ( ( ( Y - ( |_ ` X ) ) - 1 ) x. [_ Y / x ]_ B ) = ( ( Y - ( ( |_ ` X ) + 1 ) ) x. [_ Y / x ]_ B ) ) |
| 68 |
64
|
mullidd |
|- ( ph -> ( 1 x. [_ Y / x ]_ B ) = [_ Y / x ]_ B ) |
| 69 |
68
|
oveq2d |
|- ( ph -> ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - ( 1 x. [_ Y / x ]_ B ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) ) |
| 70 |
65 67 69
|
3eqtr3d |
|- ( ph -> ( ( Y - ( ( |_ ` X ) + 1 ) ) x. [_ Y / x ]_ B ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( ( |_ ` X ) + 1 ) ) x. [_ Y / x ]_ B ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) ) |
| 72 |
50 71
|
eqtrd |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) ) |
| 73 |
25
|
peano2zd |
|- ( ph -> ( ( |_ ` X ) + 1 ) e. ZZ ) |
| 74 |
3
|
zred |
|- ( ph -> M e. RR ) |
| 75 |
|
peano2rem |
|- ( M e. RR -> ( M - 1 ) e. RR ) |
| 76 |
74 75
|
syl |
|- ( ph -> ( M - 1 ) e. RR ) |
| 77 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 78 |
74 77 4
|
lesubaddd |
|- ( ph -> ( ( M - 1 ) <_ D <-> M <_ ( D + 1 ) ) ) |
| 79 |
5 78
|
mpbird |
|- ( ph -> ( M - 1 ) <_ D ) |
| 80 |
76 4 24 79 17
|
letrd |
|- ( ph -> ( M - 1 ) <_ X ) |
| 81 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 82 |
3 81
|
syl |
|- ( ph -> ( M - 1 ) e. ZZ ) |
| 83 |
|
flge |
|- ( ( X e. RR /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) <_ X <-> ( M - 1 ) <_ ( |_ ` X ) ) ) |
| 84 |
24 82 83
|
syl2anc |
|- ( ph -> ( ( M - 1 ) <_ X <-> ( M - 1 ) <_ ( |_ ` X ) ) ) |
| 85 |
80 84
|
mpbid |
|- ( ph -> ( M - 1 ) <_ ( |_ ` X ) ) |
| 86 |
74 77 27
|
lesubaddd |
|- ( ph -> ( ( M - 1 ) <_ ( |_ ` X ) <-> M <_ ( ( |_ ` X ) + 1 ) ) ) |
| 87 |
85 86
|
mpbid |
|- ( ph -> M <_ ( ( |_ ` X ) + 1 ) ) |
| 88 |
|
eluz2 |
|- ( ( ( |_ ` X ) + 1 ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( ( |_ ` X ) + 1 ) e. ZZ /\ M <_ ( ( |_ ` X ) + 1 ) ) ) |
| 89 |
3 73 87 88
|
syl3anbrc |
|- ( ph -> ( ( |_ ` X ) + 1 ) e. ( ZZ>= ` M ) ) |
| 90 |
9
|
recnd |
|- ( ( ph /\ x e. Z ) -> B e. CC ) |
| 91 |
90
|
ralrimiva |
|- ( ph -> A. x e. Z B e. CC ) |
| 92 |
|
elfzuz |
|- ( k e. ( M ... ( ( |_ ` X ) + 1 ) ) -> k e. ( ZZ>= ` M ) ) |
| 93 |
92 2
|
eleqtrrdi |
|- ( k e. ( M ... ( ( |_ ` X ) + 1 ) ) -> k e. Z ) |
| 94 |
11
|
eleq1d |
|- ( x = k -> ( B e. CC <-> C e. CC ) ) |
| 95 |
94
|
rspccva |
|- ( ( A. x e. Z B e. CC /\ k e. Z ) -> C e. CC ) |
| 96 |
91 93 95
|
syl2an |
|- ( ( ph /\ k e. ( M ... ( ( |_ ` X ) + 1 ) ) ) -> C e. CC ) |
| 97 |
|
eqvisset |
|- ( k = ( ( |_ ` X ) + 1 ) -> ( ( |_ ` X ) + 1 ) e. _V ) |
| 98 |
|
eqeq2 |
|- ( k = ( ( |_ ` X ) + 1 ) -> ( x = k <-> x = ( ( |_ ` X ) + 1 ) ) ) |
| 99 |
98
|
biimpar |
|- ( ( k = ( ( |_ ` X ) + 1 ) /\ x = ( ( |_ ` X ) + 1 ) ) -> x = k ) |
| 100 |
99 11
|
syl |
|- ( ( k = ( ( |_ ` X ) + 1 ) /\ x = ( ( |_ ` X ) + 1 ) ) -> B = C ) |
| 101 |
97 100
|
csbied |
|- ( k = ( ( |_ ` X ) + 1 ) -> [_ ( ( |_ ` X ) + 1 ) / x ]_ B = C ) |
| 102 |
101
|
eqcomd |
|- ( k = ( ( |_ ` X ) + 1 ) -> C = [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) |
| 103 |
89 96 102
|
fsumm1 |
|- ( ph -> sum_ k e. ( M ... ( ( |_ ` X ) + 1 ) ) C = ( sum_ k e. ( M ... ( ( ( |_ ` X ) + 1 ) - 1 ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 104 |
|
ax-1cn |
|- 1 e. CC |
| 105 |
|
pncan |
|- ( ( ( |_ ` X ) e. CC /\ 1 e. CC ) -> ( ( ( |_ ` X ) + 1 ) - 1 ) = ( |_ ` X ) ) |
| 106 |
52 104 105
|
sylancl |
|- ( ph -> ( ( ( |_ ` X ) + 1 ) - 1 ) = ( |_ ` X ) ) |
| 107 |
106
|
oveq2d |
|- ( ph -> ( M ... ( ( ( |_ ` X ) + 1 ) - 1 ) ) = ( M ... ( |_ ` X ) ) ) |
| 108 |
107
|
sumeq1d |
|- ( ph -> sum_ k e. ( M ... ( ( ( |_ ` X ) + 1 ) - 1 ) ) C = sum_ k e. ( M ... ( |_ ` X ) ) C ) |
| 109 |
108
|
oveq1d |
|- ( ph -> ( sum_ k e. ( M ... ( ( ( |_ ` X ) + 1 ) - 1 ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 110 |
103 109
|
eqtrd |
|- ( ph -> sum_ k e. ( M ... ( ( |_ ` X ) + 1 ) ) C = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 111 |
110
|
adantr |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> sum_ k e. ( M ... ( ( |_ ` X ) + 1 ) ) C = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 112 |
48
|
oveq2d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( M ... ( |_ ` Y ) ) = ( M ... ( ( |_ ` X ) + 1 ) ) ) |
| 113 |
112
|
sumeq1d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> sum_ k e. ( M ... ( |_ ` Y ) ) C = sum_ k e. ( M ... ( ( |_ ` X ) + 1 ) ) C ) |
| 114 |
41
|
csbeq1d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> [_ Y / x ]_ B = [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) |
| 115 |
114
|
oveq2d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 116 |
111 113 115
|
3eqtr4d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> sum_ k e. ( M ... ( |_ ` Y ) ) C = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) ) |
| 117 |
116
|
oveq1d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) - [_ Y / x ]_ A ) ) |
| 118 |
|
fzfid |
|- ( ph -> ( M ... ( |_ ` X ) ) e. Fin ) |
| 119 |
|
elfzuz |
|- ( k e. ( M ... ( |_ ` X ) ) -> k e. ( ZZ>= ` M ) ) |
| 120 |
119 2
|
eleqtrrdi |
|- ( k e. ( M ... ( |_ ` X ) ) -> k e. Z ) |
| 121 |
91 120 95
|
syl2an |
|- ( ( ph /\ k e. ( M ... ( |_ ` X ) ) ) -> C e. CC ) |
| 122 |
118 121
|
fsumcl |
|- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) C e. CC ) |
| 123 |
7
|
recnd |
|- ( ( ph /\ x e. S ) -> A e. CC ) |
| 124 |
123
|
ralrimiva |
|- ( ph -> A. x e. S A e. CC ) |
| 125 |
|
nfcsb1v |
|- F/_ x [_ Y / x ]_ A |
| 126 |
125
|
nfel1 |
|- F/ x [_ Y / x ]_ A e. CC |
| 127 |
|
csbeq1a |
|- ( x = Y -> A = [_ Y / x ]_ A ) |
| 128 |
127
|
eleq1d |
|- ( x = Y -> ( A e. CC <-> [_ Y / x ]_ A e. CC ) ) |
| 129 |
126 128
|
rspc |
|- ( Y e. S -> ( A. x e. S A e. CC -> [_ Y / x ]_ A e. CC ) ) |
| 130 |
16 124 129
|
sylc |
|- ( ph -> [_ Y / x ]_ A e. CC ) |
| 131 |
122 64 130
|
addsubd |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) - [_ Y / x ]_ A ) = ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) |
| 132 |
131
|
adantr |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) - [_ Y / x ]_ A ) = ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) |
| 133 |
117 132
|
eqtrd |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) |
| 134 |
72 133
|
oveq12d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) + ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) ) |
| 135 |
53 64
|
mulcld |
|- ( ph -> ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) e. CC ) |
| 136 |
135
|
adantr |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) e. CC ) |
| 137 |
64
|
adantr |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> [_ Y / x ]_ B e. CC ) |
| 138 |
122 130
|
subcld |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) e. CC ) |
| 139 |
138
|
adantr |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) e. CC ) |
| 140 |
136 137 139
|
nppcan3d |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) + ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 141 |
134 140
|
eqtrd |
|- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 142 |
|
peano2re |
|- ( ( |_ ` X ) e. RR -> ( ( |_ ` X ) + 1 ) e. RR ) |
| 143 |
27 142
|
syl |
|- ( ph -> ( ( |_ ` X ) + 1 ) e. RR ) |
| 144 |
23 143
|
leloed |
|- ( ph -> ( Y <_ ( ( |_ ` X ) + 1 ) <-> ( Y < ( ( |_ ` X ) + 1 ) \/ Y = ( ( |_ ` X ) + 1 ) ) ) ) |
| 145 |
20 144
|
mpbid |
|- ( ph -> ( Y < ( ( |_ ` X ) + 1 ) \/ Y = ( ( |_ ` X ) + 1 ) ) ) |
| 146 |
40 141 145
|
mpjaodan |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 147 |
|
ovex |
|- ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. _V |
| 148 |
|
nfcv |
|- F/_ x Y |
| 149 |
|
nfcv |
|- F/_ x ( Y - ( |_ ` Y ) ) |
| 150 |
|
nfcv |
|- F/_ x x. |
| 151 |
149 150 59
|
nfov |
|- F/_ x ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) |
| 152 |
|
nfcv |
|- F/_ x + |
| 153 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` Y ) ) C |
| 154 |
|
nfcv |
|- F/_ x - |
| 155 |
153 154 125
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) |
| 156 |
151 152 155
|
nfov |
|- F/_ x ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 157 |
|
id |
|- ( x = Y -> x = Y ) |
| 158 |
|
fveq2 |
|- ( x = Y -> ( |_ ` x ) = ( |_ ` Y ) ) |
| 159 |
157 158
|
oveq12d |
|- ( x = Y -> ( x - ( |_ ` x ) ) = ( Y - ( |_ ` Y ) ) ) |
| 160 |
159 61
|
oveq12d |
|- ( x = Y -> ( ( x - ( |_ ` x ) ) x. B ) = ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) ) |
| 161 |
158
|
oveq2d |
|- ( x = Y -> ( M ... ( |_ ` x ) ) = ( M ... ( |_ ` Y ) ) ) |
| 162 |
161
|
sumeq1d |
|- ( x = Y -> sum_ k e. ( M ... ( |_ ` x ) ) C = sum_ k e. ( M ... ( |_ ` Y ) ) C ) |
| 163 |
162 127
|
oveq12d |
|- ( x = Y -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 164 |
160 163
|
oveq12d |
|- ( x = Y -> ( ( ( x - ( |_ ` x ) ) x. B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) = ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 165 |
148 156 164 14
|
fvmptf |
|- ( ( Y e. S /\ ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. _V ) -> ( H ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 166 |
16 147 165
|
sylancl |
|- ( ph -> ( H ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 167 |
135 130 122
|
subadd23d |
|- ( ph -> ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ A ) + sum_ k e. ( M ... ( |_ ` X ) ) C ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 168 |
146 166 167
|
3eqtr4d |
|- ( ph -> ( H ` Y ) = ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ A ) + sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |