| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
| 2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
| 12 |
|
dvfsum.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) |
| 13 |
|
dvfsum.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
| 14 |
|
dvfsum.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) |
| 15 |
|
dvfsumlem1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 16 |
|
dvfsumlem1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 17 |
|
dvfsumlem1.3 |
⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) |
| 18 |
|
dvfsumlem1.4 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
| 19 |
|
dvfsumlem1.5 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) |
| 20 |
|
dvfsumlem1.6 |
⊢ ( 𝜑 → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 21 |
|
ioossre |
⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ |
| 22 |
1 21
|
eqsstri |
⊢ 𝑆 ⊆ ℝ |
| 23 |
22 16
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 24 |
15 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 (,) +∞ ) ) |
| 25 |
6
|
rexrd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
| 26 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
| 28 |
24 27
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) |
| 29 |
28
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 30 |
|
reflcl |
⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
| 32 |
23 31
|
resubcld |
⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ ) |
| 33 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑌 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑦 = 𝑌 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 35 |
22
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 36 |
35 7 8 10
|
dvmptrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 37 |
36
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 38 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 39 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 40 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 41 |
38 39 40
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 42 |
41
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝑆 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 43 |
37 42
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 44 |
34 43 16
|
rspcdva |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 45 |
32 44
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 46 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑌 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
| 47 |
46
|
eleq1d |
⊢ ( 𝑦 = 𝑌 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 48 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) |
| 49 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 50 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
| 51 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 52 |
49 50 51
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 53 |
52
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝑆 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) |
| 54 |
48 53
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 55 |
47 54 16
|
rspcdva |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 56 |
45 55
|
resubcld |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 57 |
29 31
|
resubcld |
⊢ ( 𝜑 → ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ ) |
| 58 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑋 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 59 |
58
|
eleq1d |
⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 60 |
59 43 15
|
rspcdva |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 61 |
57 60
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 62 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑋 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 64 |
63 54 15
|
rspcdva |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 65 |
61 64
|
resubcld |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 66 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ∈ Fin ) |
| 67 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 68 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 69 |
68 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ 𝑍 ) |
| 70 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 71 |
70
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 72 |
67 69 71
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐶 ∈ ℝ ) |
| 73 |
66 72
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ∈ ℝ ) |
| 74 |
57 44
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 75 |
74 64
|
resubcld |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 76 |
23 29
|
resubcld |
⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
| 77 |
44 76
|
remulcld |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ∈ ℝ ) |
| 78 |
44
|
recnd |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 79 |
23
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 80 |
29
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 81 |
78 79 80
|
subdid |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) = ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑌 ) − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) ) |
| 82 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 83 |
82
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 84 |
|
csbeq1 |
⊢ ( 𝑧 = 𝑌 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 85 |
84
|
eleq1d |
⊢ ( 𝑧 = 𝑌 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 86 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐵 |
| 87 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 88 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 89 |
86 87 88
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑧 ∈ 𝑆 ↦ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 90 |
89
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝑆 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 91 |
37 90
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 92 |
85 91 16
|
rspcdva |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 93 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 94 |
93
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 95 |
28
|
simprd |
⊢ ( 𝜑 → 𝑇 < 𝑋 ) |
| 96 |
23
|
ltpnfd |
⊢ ( 𝜑 → 𝑌 < +∞ ) |
| 97 |
|
iccssioo |
⊢ ( ( ( 𝑇 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝑇 < 𝑋 ∧ 𝑌 < +∞ ) ) → ( 𝑋 [,] 𝑌 ) ⊆ ( 𝑇 (,) +∞ ) ) |
| 98 |
25 94 95 96 97
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ( 𝑇 (,) +∞ ) ) |
| 99 |
98 21
|
sstrdi |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 100 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 101 |
99 100
|
sstrdi |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℂ ) |
| 102 |
100
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 103 |
|
cncfmptc |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 104 |
92 101 102 103
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 105 |
|
cncfmptid |
⊢ ( ( ( 𝑋 [,] 𝑌 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 106 |
99 100 105
|
sylancl |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 107 |
|
remulcl |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ ) |
| 108 |
|
simpl |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 109 |
108
|
recnd |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 110 |
|
simpr |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 111 |
110
|
recnd |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 112 |
109 111
|
jca |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 113 |
|
ovmpot |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 114 |
113
|
eqcomd |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 115 |
112 114
|
syl |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 116 |
115
|
eleq1d |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ ↔ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) ) |
| 117 |
116
|
biimpd |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) ) |
| 118 |
107 117
|
mpd |
⊢ ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) |
| 119 |
82 83 104 106 100 118
|
cncfmpt2ss |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 120 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } |
| 121 |
120
|
eleq1i |
⊢ ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ↔ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 122 |
121
|
biimpi |
⊢ ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 123 |
119 122
|
syl |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 124 |
|
idd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 125 |
124
|
a1dd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 126 |
125
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 127 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑌 → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 128 |
127
|
eleq1d |
⊢ ( 𝑚 = 𝑌 → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 129 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐵 |
| 130 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 |
| 131 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) |
| 132 |
129 130 131
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑚 ∈ 𝑆 ↦ ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) |
| 133 |
132
|
fmpt |
⊢ ( ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 134 |
37 133
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 135 |
128 134 16
|
rspcdva |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 136 |
135
|
recnd |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 138 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ) ) ) |
| 139 |
29 23 138
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ) ) ) |
| 140 |
139
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ) ) |
| 141 |
140
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ∈ ℝ ) |
| 142 |
141
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ∈ ℂ ) |
| 143 |
137 142
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 144 |
143 113
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 145 |
144
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ↔ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 146 |
145
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 147 |
146
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 148 |
147
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 149 |
126 148
|
jcad |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 150 |
124
|
a1dd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 151 |
150
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 152 |
|
csbeq1 |
⊢ ( 𝑘 = 𝑌 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 153 |
152
|
eleq1d |
⊢ ( 𝑘 = 𝑌 → ( ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 154 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
| 155 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
| 156 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 157 |
154 155 156
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑆 ↦ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 158 |
157
|
fmpt |
⊢ ( ∀ 𝑘 ∈ 𝑆 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) : 𝑆 ⟶ ℝ ) |
| 159 |
37 158
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑆 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 160 |
153 159 16
|
rspcdva |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 161 |
160
|
recnd |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 163 |
162 142
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 164 |
163 114
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 165 |
164
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ↔ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 166 |
165
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 167 |
166
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) ) |
| 168 |
167
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 169 |
151 168
|
jcad |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) ) |
| 170 |
149 169
|
impbid |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 171 |
170
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } ) |
| 172 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } |
| 173 |
172
|
eqcomi |
⊢ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 174 |
173
|
eqeq2i |
⊢ ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } ↔ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 175 |
174
|
biimpi |
⊢ ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 176 |
171 175
|
syl |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 177 |
176
|
eleq1d |
⊢ ( 𝜑 → ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 178 |
177
|
biimpd |
⊢ ( 𝜑 → ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 179 |
123 178
|
mpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 180 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 181 |
180
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 182 |
|
ioossicc |
⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) |
| 183 |
182 99
|
sstrid |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ℝ ) |
| 184 |
183
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑦 ∈ ℝ ) |
| 185 |
184
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑦 ∈ ℂ ) |
| 186 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → 1 ∈ ℂ ) |
| 187 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 188 |
187
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 189 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
| 190 |
181
|
dvmptid |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 191 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 192 |
|
iooretop |
⊢ ( 𝑋 (,) 𝑌 ) ∈ ( topGen ‘ ran (,) ) |
| 193 |
192
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ∈ ( topGen ‘ ran (,) ) ) |
| 194 |
181 188 189 190 183 191 82 193
|
dvmptres |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 1 ) ) |
| 195 |
181 185 186 194 78
|
dvmptcmul |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 1 ) ) ) |
| 196 |
78
|
mulridd |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 1 ) = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 197 |
196
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 1 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 198 |
195 197
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 199 |
98 1
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ 𝑆 ) |
| 200 |
199
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ↾ ( 𝑋 [,] 𝑌 ) ) = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
| 201 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℂ ) |
| 202 |
201
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℂ ) |
| 203 |
10
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 204 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ 𝑉 ) |
| 205 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = 𝑆 ) |
| 206 |
204 205
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = 𝑆 ) |
| 207 |
203 206
|
eqtrd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = 𝑆 ) |
| 208 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℂ ∧ 𝑆 ⊆ ℝ ) ∧ dom ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℂ ) ) |
| 209 |
102 202 35 207 208
|
syl31anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℂ ) ) |
| 210 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℂ ) ) → ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) ) |
| 211 |
100 209 210
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) ↔ ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) : 𝑆 ⟶ ℝ ) ) |
| 212 |
48 211
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) ) |
| 213 |
52 212
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) ) |
| 214 |
|
rescncf |
⊢ ( ( 𝑋 [,] 𝑌 ) ⊆ 𝑆 → ( ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( 𝑆 –cn→ ℝ ) → ( ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ↾ ( 𝑋 [,] 𝑌 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 215 |
199 213 214
|
sylc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ↾ ( 𝑋 [,] 𝑌 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 216 |
200 215
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 217 |
54
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 218 |
217
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 219 |
43
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 220 |
52
|
oveq2i |
⊢ ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( ℝ D ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
| 221 |
10 220 41
|
3eqtr3g |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ 𝑆 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 222 |
182 199
|
sstrid |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ 𝑆 ) |
| 223 |
181 218 219 221 222 191 82 193
|
dvmptres |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 224 |
182
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 225 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝜑 ) |
| 226 |
199
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ∈ 𝑆 ) |
| 227 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑌 ∈ 𝑆 ) |
| 228 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐷 ∈ ℝ ) |
| 229 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑋 ∈ ℝ ) |
| 230 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐷 ≤ 𝑋 ) |
| 231 |
140
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑋 ≤ 𝑦 ) |
| 232 |
228 229 141 230 231
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐷 ≤ 𝑦 ) |
| 233 |
140
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ≤ 𝑌 ) |
| 234 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑌 ≤ 𝑈 ) |
| 235 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → 𝑌 ∈ 𝑆 ) |
| 236 |
|
eleq1 |
⊢ ( 𝑘 = 𝑌 → ( 𝑘 ∈ 𝑆 ↔ 𝑌 ∈ 𝑆 ) ) |
| 237 |
236
|
anbi2d |
⊢ ( 𝑘 = 𝑌 → ( ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) ) |
| 238 |
|
breq2 |
⊢ ( 𝑘 = 𝑌 → ( 𝑦 ≤ 𝑘 ↔ 𝑦 ≤ 𝑌 ) ) |
| 239 |
|
breq1 |
⊢ ( 𝑘 = 𝑌 → ( 𝑘 ≤ 𝑈 ↔ 𝑌 ≤ 𝑈 ) ) |
| 240 |
238 239
|
3anbi23d |
⊢ ( 𝑘 = 𝑌 → ( ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ↔ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) ) |
| 241 |
237 240
|
3anbi23d |
⊢ ( 𝑘 = 𝑌 → ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) ) ) |
| 242 |
|
vex |
⊢ 𝑘 ∈ V |
| 243 |
242 11
|
csbie |
⊢ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐶 |
| 244 |
243 152
|
eqtr3id |
⊢ ( 𝑘 = 𝑌 → 𝐶 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 245 |
244
|
breq1d |
⊢ ( 𝑘 = 𝑌 → ( 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 246 |
241 245
|
imbi12d |
⊢ ( 𝑘 = 𝑌 → ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 247 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) |
| 248 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 249 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 250 |
248 249 39
|
nfbr |
⊢ Ⅎ 𝑥 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 251 |
247 250
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 252 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) |
| 253 |
252
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) ) |
| 254 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ 𝑦 ) ) |
| 255 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑘 ↔ 𝑦 ≤ 𝑘 ) ) |
| 256 |
254 255
|
3anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ↔ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ) |
| 257 |
253 256
|
3anbi23d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ) ) |
| 258 |
40
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ≤ 𝐵 ↔ 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 259 |
257 258
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 260 |
251 259 13
|
chvarfv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 261 |
246 260
|
vtoclg |
⊢ ( 𝑌 ∈ 𝑆 → ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 262 |
235 261
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑦 ∧ 𝑦 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 263 |
225 226 227 232 233 234 262
|
syl123anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 264 |
224 263
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 265 |
29
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 266 |
23
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 267 |
|
lbicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 268 |
265 266 18 267
|
syl3anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 269 |
|
ubicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 270 |
265 266 18 269
|
syl3anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 271 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) |
| 272 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑌 ) ) |
| 273 |
29 23 179 198 216 223 264 268 270 18 271 62 272 46
|
dvle |
⊢ ( 𝜑 → ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑌 ) − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 274 |
81 273
|
eqbrtrd |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 275 |
77 55 64 274
|
lesubd |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 276 |
74
|
recnd |
⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 277 |
45
|
recnd |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 278 |
55
|
recnd |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 279 |
276 277 278
|
subsubd |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 280 |
277 276
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 281 |
31
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℂ ) |
| 282 |
79 80 281
|
nnncan2d |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) = ( 𝑌 − 𝑋 ) ) |
| 283 |
282
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − 𝑋 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 284 |
32
|
recnd |
⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℂ ) |
| 285 |
57
|
recnd |
⊢ ( 𝜑 → ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ∈ ℂ ) |
| 286 |
284 285 78
|
subdird |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 287 |
76
|
recnd |
⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℂ ) |
| 288 |
287 78
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝑌 − 𝑋 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 289 |
283 286 288
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 290 |
289
|
negeqd |
⊢ ( 𝜑 → - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = - ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 291 |
280 290
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = - ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 292 |
291
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( - ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 293 |
77
|
recnd |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ∈ ℂ ) |
| 294 |
293 278
|
negsubdid |
⊢ ( 𝜑 → - ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( - ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 295 |
292 294
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = - ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 296 |
293 278
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 297 |
279 295 296
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 298 |
275 297
|
breqtrrd |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 299 |
64 74 56 298
|
lesubd |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 300 |
|
flle |
⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) |
| 301 |
29 300
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) |
| 302 |
29 31
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ↔ ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) ) |
| 303 |
301 302
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) |
| 304 |
58
|
breq2d |
⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 305 |
263
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 306 |
304 305 268
|
rspcdva |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 307 |
44 60 57 303 306
|
lemul2ad |
⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 308 |
74 61 64 307
|
lesub1dd |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 309 |
56 75 65 299 308
|
letrd |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 310 |
56 65 73 309
|
leadd1dd |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ≤ ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
dvfsumlem1 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 312 |
29
|
leidd |
⊢ ( 𝜑 → 𝑋 ≤ 𝑋 ) |
| 313 |
265 266 12 18 19
|
xrletrd |
⊢ ( 𝜑 → 𝑋 ≤ 𝑈 ) |
| 314 |
|
fllep1 |
⊢ ( 𝑋 ∈ ℝ → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 315 |
29 314
|
syl |
⊢ ( 𝜑 → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 312 313 315
|
dvfsumlem1 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 317 |
310 311 316
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ) |
| 318 |
65 60
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 319 |
56 44
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 320 |
|
peano2rem |
⊢ ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) |
| 321 |
57 320
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) |
| 322 |
321 60
|
remulcld |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 323 |
322 64
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 324 |
|
peano2rem |
⊢ ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) |
| 325 |
32 324
|
syl |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) |
| 326 |
325 60
|
remulcld |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 327 |
326 55
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 328 |
325 44
|
remulcld |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 329 |
328 55
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 330 |
322
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 331 |
326
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 332 |
330 331
|
subcld |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ∈ ℂ ) |
| 333 |
332 278
|
addcomd |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 + ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 334 |
330 331 278
|
subsubd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 335 |
278 331 330
|
subsub2d |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 + ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 336 |
333 334 335
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 337 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 338 |
284 285 337
|
nnncan2d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) = ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) ) |
| 339 |
338 282
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) = ( 𝑌 − 𝑋 ) ) |
| 340 |
339
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − 𝑋 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 341 |
325
|
recnd |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℂ ) |
| 342 |
321
|
recnd |
⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℂ ) |
| 343 |
60
|
recnd |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 344 |
341 342 343
|
subdird |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) − ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 345 |
287 343
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝑌 − 𝑋 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 346 |
340 344 345
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 347 |
346
|
oveq2d |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 348 |
336 347
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ) |
| 349 |
60 76
|
remulcld |
⊢ ( 𝜑 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ∈ ℝ ) |
| 350 |
|
cncfmptc |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 351 |
60 101 102 350
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 352 |
|
remulcl |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ ) |
| 353 |
|
simpl |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 354 |
353
|
recnd |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 355 |
|
simpr |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 356 |
355
|
recnd |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 357 |
354 356
|
jca |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 358 |
|
ovmpot |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 359 |
358
|
eqcomd |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 360 |
357 359
|
syl |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 361 |
360
|
eleq1d |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ ↔ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) ) |
| 362 |
361
|
biimpd |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ∈ ℝ → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) ) |
| 363 |
352 362
|
mpd |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) |
| 364 |
82 83 351 106 100 363
|
cncfmpt2ss |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 365 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } |
| 366 |
365
|
eleq1i |
⊢ ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ↔ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 367 |
366
|
biimpi |
⊢ ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 368 |
364 367
|
syl |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 369 |
124
|
a1dd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 370 |
369
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 371 |
343
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 372 |
371 142
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 373 |
372 358
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 374 |
373
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ↔ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 375 |
374
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 376 |
375
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 377 |
376
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 378 |
370 377
|
jcad |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 379 |
124
|
a1dd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 380 |
379
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ) |
| 381 |
372 359
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 382 |
381
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ↔ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 383 |
382
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 384 |
383
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) ) |
| 385 |
384
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) |
| 386 |
380 385
|
jcad |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ) ) |
| 387 |
378 386
|
impbid |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) ) |
| 388 |
387
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } ) |
| 389 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } |
| 390 |
389
|
eqcomi |
⊢ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) |
| 391 |
390
|
eqeq2i |
⊢ ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } ↔ { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 392 |
391
|
biimpi |
⊢ ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) } → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 393 |
388 392
|
syl |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) |
| 394 |
393
|
eleq1d |
⊢ ( 𝜑 → ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ↔ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 395 |
394
|
biimpd |
⊢ ( 𝜑 → ( { 〈 𝑦 , 𝑤 〉 ∣ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝑤 = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) |
| 396 |
368 395
|
mpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 397 |
181 185 186 194 343
|
dvmptcmul |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 1 ) ) ) |
| 398 |
343
|
mulridd |
⊢ ( 𝜑 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 1 ) = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 399 |
398
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 1 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 400 |
397 399
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 401 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑋 ∈ 𝑆 ) |
| 402 |
141
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ∈ ℝ* ) |
| 403 |
266
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑌 ∈ ℝ* ) |
| 404 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑈 ∈ ℝ* ) |
| 405 |
402 403 404 233 234
|
xrletrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 ≤ 𝑈 ) |
| 406 |
|
vex |
⊢ 𝑦 ∈ V |
| 407 |
|
eleq1 |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) |
| 408 |
407
|
anbi2d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ↔ ( 𝑋 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ) |
| 409 |
|
breq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑋 ≤ 𝑘 ↔ 𝑋 ≤ 𝑦 ) ) |
| 410 |
|
breq1 |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ≤ 𝑈 ↔ 𝑦 ≤ 𝑈 ) ) |
| 411 |
409 410
|
3anbi23d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ↔ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑈 ) ) ) |
| 412 |
408 411
|
3anbi23d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑈 ) ) ) ) |
| 413 |
|
csbeq1 |
⊢ ( 𝑘 = 𝑦 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 414 |
243 413
|
eqtr3id |
⊢ ( 𝑘 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 415 |
414
|
breq1d |
⊢ ( 𝑘 = 𝑦 → ( 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 416 |
412 415
|
imbi12d |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑈 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 417 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝑋 ∈ 𝑆 ) |
| 418 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) |
| 419 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 |
| 420 |
248 249 419
|
nfbr |
⊢ Ⅎ 𝑥 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 |
| 421 |
418 420
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 422 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑆 ↔ 𝑋 ∈ 𝑆 ) ) |
| 423 |
422
|
anbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ↔ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) ) |
| 424 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ 𝑋 ) ) |
| 425 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑘 ↔ 𝑋 ≤ 𝑘 ) ) |
| 426 |
424 425
|
3anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ↔ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ) |
| 427 |
423 426
|
3anbi23d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) ) ) |
| 428 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑋 → 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 429 |
428
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐶 ≤ 𝐵 ↔ 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 430 |
427 429
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 431 |
421 430 13
|
vtoclg1f |
⊢ ( 𝑋 ∈ 𝑆 → ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 432 |
417 431
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 433 |
406 416 432
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑈 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 434 |
225 401 226 230 231 405 433
|
syl123anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 435 |
224 434
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 436 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) |
| 437 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑦 ) = ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑌 ) ) |
| 438 |
29 23 216 223 396 400 435 268 270 18 62 436 46 437
|
dvle |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑌 ) − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) ) |
| 439 |
343 79 80
|
subdid |
⊢ ( 𝜑 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) = ( ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑌 ) − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · 𝑋 ) ) ) |
| 440 |
438 439
|
breqtrrd |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) |
| 441 |
55 64 349 440
|
subled |
⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐴 − ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 · ( 𝑌 − 𝑋 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
| 442 |
348 441
|
eqbrtrd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
| 443 |
322 327 64 442
|
subled |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 444 |
325
|
renegcld |
⊢ ( 𝜑 → - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ∈ ℝ ) |
| 445 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 446 |
23 31 445
|
lesubadd2d |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ≤ 1 ↔ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 447 |
20 446
|
mpbird |
⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ≤ 1 ) |
| 448 |
32 445
|
suble0d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ≤ 0 ↔ ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ≤ 1 ) ) |
| 449 |
447 448
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ≤ 0 ) |
| 450 |
325
|
le0neg1d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ≤ 0 ↔ 0 ≤ - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) ) |
| 451 |
449 450
|
mpbid |
⊢ ( 𝜑 → 0 ≤ - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) ) |
| 452 |
44 60 444 451 306
|
lemul2ad |
⊢ ( 𝜑 → ( - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ ( - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 453 |
341 78
|
mulneg1d |
⊢ ( 𝜑 → ( - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 454 |
341 343
|
mulneg1d |
⊢ ( 𝜑 → ( - ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 455 |
452 453 454
|
3brtr3d |
⊢ ( 𝜑 → - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 456 |
326 328
|
lenegd |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ↔ - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ - ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 457 |
455 456
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 458 |
326 328 55 457
|
lesub1dd |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 459 |
323 327 329 443 458
|
letrd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 460 |
285 337 343
|
subdird |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 461 |
343
|
mullidd |
⊢ ( 𝜑 → ( 1 · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 462 |
461
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 463 |
460 462
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 464 |
463
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 465 |
284 337 78
|
subdird |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 466 |
78
|
mullidd |
⊢ ( 𝜑 → ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 467 |
466
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 468 |
465 467
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 469 |
468
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 470 |
459 464 469
|
3brtr3d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 471 |
61
|
recnd |
⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 472 |
64
|
recnd |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 473 |
471 472 343
|
sub32d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 474 |
277 278 78
|
sub32d |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 475 |
470 473 474
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 476 |
318 319 73 475
|
leadd1dd |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ≤ ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 477 |
65
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 478 |
73
|
recnd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ∈ ℂ ) |
| 479 |
477 478 343
|
addsubd |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 480 |
56
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 481 |
480 478 78
|
addsubd |
⊢ ( 𝜑 → ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |
| 482 |
476 479 481
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 483 |
316
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 484 |
311
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 485 |
482 483 484
|
3brtr4d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 486 |
317 485
|
jca |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |