Step |
Hyp |
Ref |
Expression |
1 |
|
cncfmpt2ss.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
cncfmpt2ss.2 |
⊢ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
3 |
|
cncfmpt2ss.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ 𝑆 ) ) |
4 |
|
cncfmpt2ss.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ 𝑆 ) ) |
5 |
|
cncfmpt2ss.5 |
⊢ 𝑆 ⊆ ℂ |
6 |
|
cncfmpt2ss.6 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |
7 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ 𝑆 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑆 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑆 ) |
9 |
8
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑆 ) |
10 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ 𝑆 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑆 ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑆 ) |
12 |
11
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) |
13 |
9 12 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |
14 |
13
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) : 𝑋 ⟶ 𝑆 ) |
15 |
2
|
a1i |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
16 |
|
ssid |
⊢ ℂ ⊆ ℂ |
17 |
|
cncfss |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑋 –cn→ 𝑆 ) ⊆ ( 𝑋 –cn→ ℂ ) ) |
18 |
5 16 17
|
mp2an |
⊢ ( 𝑋 –cn→ 𝑆 ) ⊆ ( 𝑋 –cn→ ℂ ) |
19 |
18 3
|
sselid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
20 |
18 4
|
sselid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
21 |
1 15 19 20
|
cncfmpt2f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
22 |
|
cncffvrn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ 𝑆 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) : 𝑋 ⟶ 𝑆 ) ) |
23 |
5 21 22
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ 𝑆 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) : 𝑋 ⟶ 𝑆 ) ) |
24 |
14 23
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ 𝑆 ) ) |