Metamath Proof Explorer


Theorem cncfmpt2ss

Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Hypotheses cncfmpt2ss.1 J=TopOpenfld
cncfmpt2ss.2 FJ×tJCnJ
cncfmpt2ss.3 φxXA:XcnS
cncfmpt2ss.4 φxXB:XcnS
cncfmpt2ss.5 S
cncfmpt2ss.6 ASBSAFBS
Assertion cncfmpt2ss φxXAFB:XcnS

Proof

Step Hyp Ref Expression
1 cncfmpt2ss.1 J=TopOpenfld
2 cncfmpt2ss.2 FJ×tJCnJ
3 cncfmpt2ss.3 φxXA:XcnS
4 cncfmpt2ss.4 φxXB:XcnS
5 cncfmpt2ss.5 S
6 cncfmpt2ss.6 ASBSAFBS
7 cncff xXA:XcnSxXA:XS
8 3 7 syl φxXA:XS
9 8 fvmptelcdm φxXAS
10 cncff xXB:XcnSxXB:XS
11 4 10 syl φxXB:XS
12 11 fvmptelcdm φxXBS
13 9 12 6 syl2anc φxXAFBS
14 13 fmpttd φxXAFB:XS
15 2 a1i φFJ×tJCnJ
16 ssid
17 cncfss SXcnSXcn
18 5 16 17 mp2an XcnSXcn
19 18 3 sselid φxXA:Xcn
20 18 4 sselid φxXB:Xcn
21 1 15 19 20 cncfmpt2f φxXAFB:Xcn
22 cncfcdm SxXAFB:XcnxXAFB:XcnSxXAFB:XS
23 5 21 22 sylancr φxXAFB:XcnSxXAFB:XS
24 14 23 mpbird φxXAFB:XcnS