Metamath Proof Explorer


Theorem dvfsumlem2

Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Hypotheses dvfsum.s S=T+∞
dvfsum.z Z=M
dvfsum.m φM
dvfsum.d φD
dvfsum.md φMD+1
dvfsum.t φT
dvfsum.a φxSA
dvfsum.b1 φxSBV
dvfsum.b2 φxZB
dvfsum.b3 φdxSAdx=xSB
dvfsum.c x=kB=C
dvfsum.u φU*
dvfsum.l φxSkSDxxkkUCB
dvfsum.h H=xSxxB+k=MxC-A
dvfsumlem1.1 φXS
dvfsumlem1.2 φYS
dvfsumlem1.3 φDX
dvfsumlem1.4 φXY
dvfsumlem1.5 φYU
dvfsumlem1.6 φYX+1
Assertion dvfsumlem2 φHYHXHXX/xBHYY/xB

Proof

Step Hyp Ref Expression
1 dvfsum.s S=T+∞
2 dvfsum.z Z=M
3 dvfsum.m φM
4 dvfsum.d φD
5 dvfsum.md φMD+1
6 dvfsum.t φT
7 dvfsum.a φxSA
8 dvfsum.b1 φxSBV
9 dvfsum.b2 φxZB
10 dvfsum.b3 φdxSAdx=xSB
11 dvfsum.c x=kB=C
12 dvfsum.u φU*
13 dvfsum.l φxSkSDxxkkUCB
14 dvfsum.h H=xSxxB+k=MxC-A
15 dvfsumlem1.1 φXS
16 dvfsumlem1.2 φYS
17 dvfsumlem1.3 φDX
18 dvfsumlem1.4 φXY
19 dvfsumlem1.5 φYU
20 dvfsumlem1.6 φYX+1
21 ioossre T+∞
22 1 21 eqsstri S
23 22 16 sselid φY
24 15 1 eleqtrdi φXT+∞
25 6 rexrd φT*
26 elioopnf T*XT+∞XT<X
27 25 26 syl φXT+∞XT<X
28 24 27 mpbid φXT<X
29 28 simpld φX
30 reflcl XX
31 29 30 syl φX
32 23 31 resubcld φYX
33 csbeq1 y=Yy/xB=Y/xB
34 33 eleq1d y=Yy/xBY/xB
35 22 a1i φS
36 35 7 8 10 dvmptrecl φxSB
37 36 fmpttd φxSB:S
38 nfcv _yB
39 nfcsb1v _xy/xB
40 csbeq1a x=yB=y/xB
41 38 39 40 cbvmpt xSB=ySy/xB
42 41 fmpt ySy/xBxSB:S
43 37 42 sylibr φySy/xB
44 34 43 16 rspcdva φY/xB
45 32 44 remulcld φYXY/xB
46 csbeq1 y=Yy/xA=Y/xA
47 46 eleq1d y=Yy/xAY/xA
48 7 fmpttd φxSA:S
49 nfcv _yA
50 nfcsb1v _xy/xA
51 csbeq1a x=yA=y/xA
52 49 50 51 cbvmpt xSA=ySy/xA
53 52 fmpt ySy/xAxSA:S
54 48 53 sylibr φySy/xA
55 47 54 16 rspcdva φY/xA
56 45 55 resubcld φYXY/xBY/xA
57 29 31 resubcld φXX
58 csbeq1 y=Xy/xB=X/xB
59 58 eleq1d y=Xy/xBX/xB
60 59 43 15 rspcdva φX/xB
61 57 60 remulcld φXXX/xB
62 csbeq1 y=Xy/xA=X/xA
63 62 eleq1d y=Xy/xAX/xA
64 63 54 15 rspcdva φX/xA
65 61 64 resubcld φXXX/xBX/xA
66 fzfid φMXFin
67 9 ralrimiva φxZB
68 elfzuz kMXkM
69 68 2 eleqtrrdi kMXkZ
70 11 eleq1d x=kBC
71 70 rspccva xZBkZC
72 67 69 71 syl2an φkMXC
73 66 72 fsumrecl φk=MXC
74 57 44 remulcld φXXY/xB
75 74 64 resubcld φXXY/xBX/xA
76 23 29 resubcld φYX
77 44 76 remulcld φY/xBYX
78 44 recnd φY/xB
79 23 recnd φY
80 29 recnd φX
81 78 79 80 subdid φY/xBYX=Y/xBYY/xBX
82 eqid TopOpenfld=TopOpenfld
83 82 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
84 pnfxr +∞*
85 84 a1i φ+∞*
86 28 simprd φT<X
87 23 ltpnfd φY<+∞
88 iccssioo T*+∞*T<XY<+∞XYT+∞
89 25 85 86 87 88 syl22anc φXYT+∞
90 89 21 sstrdi φXY
91 ax-resscn
92 90 91 sstrdi φXY
93 91 a1i φ
94 cncfmptc Y/xBXYyXYY/xB:XYcn
95 44 92 93 94 syl3anc φyXYY/xB:XYcn
96 cncfmptid XYyXYy:XYcn
97 90 91 96 sylancl φyXYy:XYcn
98 remulcl Y/xByY/xBy
99 82 83 95 97 91 98 cncfmpt2ss φyXYY/xBy:XYcn
100 reelprrecn
101 100 a1i φ
102 ioossicc XYXY
103 102 90 sstrid φXY
104 103 sselda φyXYy
105 104 recnd φyXYy
106 1cnd φyXY1
107 simpr φyy
108 107 recnd φyy
109 1cnd φy1
110 101 dvmptid φdyydy=y1
111 82 tgioo2 topGenran.=TopOpenfld𝑡
112 iooretop XYtopGenran.
113 112 a1i φXYtopGenran.
114 101 108 109 110 103 111 82 113 dvmptres φdyXYydy=yXY1
115 101 105 106 114 78 dvmptcmul φdyXYY/xBydy=yXYY/xB1
116 78 mulridd φY/xB1=Y/xB
117 116 mpteq2dv φyXYY/xB1=yXYY/xB
118 115 117 eqtrd φdyXYY/xBydy=yXYY/xB
119 89 1 sseqtrrdi φXYS
120 119 resmptd φySy/xAXY=yXYy/xA
121 7 recnd φxSA
122 121 fmpttd φxSA:S
123 10 dmeqd φdomdxSAdx=domxSB
124 8 ralrimiva φxSBV
125 dmmptg xSBVdomxSB=S
126 124 125 syl φdomxSB=S
127 123 126 eqtrd φdomdxSAdx=S
128 dvcn xSA:SSdomdxSAdx=SxSA:Scn
129 93 122 35 127 128 syl31anc φxSA:Scn
130 cncfcdm xSA:ScnxSA:ScnxSA:S
131 91 129 130 sylancr φxSA:ScnxSA:S
132 48 131 mpbird φxSA:Scn
133 52 132 eqeltrrid φySy/xA:Scn
134 rescncf XYSySy/xA:ScnySy/xAXY:XYcn
135 119 133 134 sylc φySy/xAXY:XYcn
136 120 135 eqeltrrd φyXYy/xA:XYcn
137 54 r19.21bi φySy/xA
138 137 recnd φySy/xA
139 43 r19.21bi φySy/xB
140 52 oveq2i dxSAdx=dySy/xAdy
141 10 140 41 3eqtr3g φdySy/xAdy=ySy/xB
142 102 119 sstrid φXYS
143 101 138 139 141 142 111 82 113 dvmptres φdyXYy/xAdy=yXYy/xB
144 102 sseli yXYyXY
145 simpl φyXYφ
146 119 sselda φyXYyS
147 16 adantr φyXYYS
148 4 adantr φyXYD
149 29 adantr φyXYX
150 elicc2 XYyXYyXyyY
151 29 23 150 syl2anc φyXYyXyyY
152 151 biimpa φyXYyXyyY
153 152 simp1d φyXYy
154 17 adantr φyXYDX
155 152 simp2d φyXYXy
156 148 149 153 154 155 letrd φyXYDy
157 152 simp3d φyXYyY
158 19 adantr φyXYYU
159 simp2r φySYSDyyYYUYS
160 eleq1 k=YkSYS
161 160 anbi2d k=YySkSySYS
162 breq2 k=YykyY
163 breq1 k=YkUYU
164 162 163 3anbi23d k=YDyykkUDyyYYU
165 161 164 3anbi23d k=YφySkSDyykkUφySYSDyyYYU
166 vex kV
167 166 11 csbie k/xB=C
168 csbeq1 k=Yk/xB=Y/xB
169 167 168 eqtr3id k=YC=Y/xB
170 169 breq1d k=YCy/xBY/xBy/xB
171 165 170 imbi12d k=YφySkSDyykkUCy/xBφySYSDyyYYUY/xBy/xB
172 nfv xφySkSDyykkU
173 nfcv _xC
174 nfcv _x
175 173 174 39 nfbr xCy/xB
176 172 175 nfim xφySkSDyykkUCy/xB
177 eleq1 x=yxSyS
178 177 anbi1d x=yxSkSySkS
179 breq2 x=yDxDy
180 breq1 x=yxkyk
181 179 180 3anbi12d x=yDxxkkUDyykkU
182 178 181 3anbi23d x=yφxSkSDxxkkUφySkSDyykkU
183 40 breq2d x=yCBCy/xB
184 182 183 imbi12d x=yφxSkSDxxkkUCBφySkSDyykkUCy/xB
185 176 184 13 chvarfv φySkSDyykkUCy/xB
186 171 185 vtoclg YSφySYSDyyYYUY/xBy/xB
187 159 186 mpcom φySYSDyyYYUY/xBy/xB
188 145 146 147 156 157 158 187 syl123anc φyXYY/xBy/xB
189 144 188 sylan2 φyXYY/xBy/xB
190 29 rexrd φX*
191 23 rexrd φY*
192 lbicc2 X*Y*XYXXY
193 190 191 18 192 syl3anc φXXY
194 ubicc2 X*Y*XYYXY
195 190 191 18 194 syl3anc φYXY
196 oveq2 y=XY/xBy=Y/xBX
197 oveq2 y=YY/xBy=Y/xBY
198 29 23 99 118 136 143 189 193 195 18 196 62 197 46 dvle φY/xBYY/xBXY/xAX/xA
199 81 198 eqbrtrd φY/xBYXY/xAX/xA
200 77 55 64 199 lesubd φX/xAY/xAY/xBYX
201 74 recnd φXXY/xB
202 45 recnd φYXY/xB
203 55 recnd φY/xA
204 201 202 203 subsubd φXXY/xBYXY/xBY/xA=XXY/xB-YXY/xB+Y/xA
205 202 201 negsubdi2d φYXY/xBXXY/xB=XXY/xBYXY/xB
206 31 recnd φX
207 79 80 206 nnncan2d φY-X-XX=YX
208 207 oveq1d φY-X-XXY/xB=YXY/xB
209 32 recnd φYX
210 57 recnd φXX
211 209 210 78 subdird φY-X-XXY/xB=YXY/xBXXY/xB
212 76 recnd φYX
213 212 78 mulcomd φYXY/xB=Y/xBYX
214 208 211 213 3eqtr3d φYXY/xBXXY/xB=Y/xBYX
215 214 negeqd φYXY/xBXXY/xB=Y/xBYX
216 205 215 eqtr3d φXXY/xBYXY/xB=Y/xBYX
217 216 oveq1d φXXY/xB-YXY/xB+Y/xA=-Y/xBYX+Y/xA
218 77 recnd φY/xBYX
219 218 203 negsubdid φY/xBYXY/xA=-Y/xBYX+Y/xA
220 217 219 eqtr4d φXXY/xB-YXY/xB+Y/xA=Y/xBYXY/xA
221 218 203 negsubdi2d φY/xBYXY/xA=Y/xAY/xBYX
222 204 220 221 3eqtrd φXXY/xBYXY/xBY/xA=Y/xAY/xBYX
223 200 222 breqtrrd φX/xAXXY/xBYXY/xBY/xA
224 64 74 56 223 lesubd φYXY/xBY/xAXXY/xBX/xA
225 flle XXX
226 29 225 syl φXX
227 29 31 subge0d φ0XXXX
228 226 227 mpbird φ0XX
229 58 breq2d y=XY/xBy/xBY/xBX/xB
230 188 ralrimiva φyXYY/xBy/xB
231 229 230 193 rspcdva φY/xBX/xB
232 44 60 57 228 231 lemul2ad φXXY/xBXXX/xB
233 74 61 64 232 lesub1dd φXXY/xBX/xAXXX/xBX/xA
234 56 75 65 224 233 letrd φYXY/xBY/xAXXX/xBX/xA
235 56 65 73 234 leadd1dd φYXY/xB-Y/xA+k=MXCXXX/xB-X/xA+k=MXC
236 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 dvfsumlem1 φHY=YXY/xB-Y/xA+k=MXC
237 29 leidd φXX
238 190 191 12 18 19 xrletrd φXU
239 fllep1 XXX+1
240 29 239 syl φXX+1
241 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 237 238 240 dvfsumlem1 φHX=XXX/xB-X/xA+k=MXC
242 235 236 241 3brtr4d φHYHX
243 65 60 resubcld φXXX/xB-X/xA-X/xB
244 56 44 resubcld φYXY/xB-Y/xA-Y/xB
245 peano2rem XXX-X-1
246 57 245 syl φX-X-1
247 246 60 remulcld φX-X-1X/xB
248 247 64 resubcld φX-X-1X/xBX/xA
249 peano2rem YXY-X-1
250 32 249 syl φY-X-1
251 250 60 remulcld φY-X-1X/xB
252 251 55 resubcld φY-X-1X/xBY/xA
253 250 44 remulcld φY-X-1Y/xB
254 253 55 resubcld φY-X-1Y/xBY/xA
255 247 recnd φX-X-1X/xB
256 251 recnd φY-X-1X/xB
257 255 256 subcld φX-X-1X/xBY-X-1X/xB
258 257 203 addcomd φX-X-1X/xB-Y-X-1X/xB+Y/xA=Y/xA+X-X-1X/xB-Y-X-1X/xB
259 255 256 203 subsubd φX-X-1X/xBY-X-1X/xBY/xA=X-X-1X/xB-Y-X-1X/xB+Y/xA
260 203 256 255 subsub2d φY/xAY-X-1X/xBX-X-1X/xB=Y/xA+X-X-1X/xB-Y-X-1X/xB
261 258 259 260 3eqtr4d φX-X-1X/xBY-X-1X/xBY/xA=Y/xAY-X-1X/xBX-X-1X/xB
262 1cnd φ1
263 209 210 262 nnncan2d φYX-1-X-X-1=Y-X-XX
264 263 207 eqtrd φYX-1-X-X-1=YX
265 264 oveq1d φYX-1-X-X-1X/xB=YXX/xB
266 250 recnd φY-X-1
267 246 recnd φX-X-1
268 60 recnd φX/xB
269 266 267 268 subdird φYX-1-X-X-1X/xB=Y-X-1X/xBX-X-1X/xB
270 212 268 mulcomd φYXX/xB=X/xBYX
271 265 269 270 3eqtr3d φY-X-1X/xBX-X-1X/xB=X/xBYX
272 271 oveq2d φY/xAY-X-1X/xBX-X-1X/xB=Y/xAX/xBYX
273 261 272 eqtrd φX-X-1X/xBY-X-1X/xBY/xA=Y/xAX/xBYX
274 60 76 remulcld φX/xBYX
275 cncfmptc X/xBXYyXYX/xB:XYcn
276 60 92 93 275 syl3anc φyXYX/xB:XYcn
277 remulcl X/xByX/xBy
278 82 83 276 97 91 277 cncfmpt2ss φyXYX/xBy:XYcn
279 101 105 106 114 268 dvmptcmul φdyXYX/xBydy=yXYX/xB1
280 268 mulridd φX/xB1=X/xB
281 280 mpteq2dv φyXYX/xB1=yXYX/xB
282 279 281 eqtrd φdyXYX/xBydy=yXYX/xB
283 15 adantr φyXYXS
284 153 rexrd φyXYy*
285 191 adantr φyXYY*
286 12 adantr φyXYU*
287 284 285 286 157 158 xrletrd φyXYyU
288 vex yV
289 eleq1 k=ykSyS
290 289 anbi2d k=yXSkSXSyS
291 breq2 k=yXkXy
292 breq1 k=ykUyU
293 291 292 3anbi23d k=yDXXkkUDXXyyU
294 290 293 3anbi23d k=yφXSkSDXXkkUφXSySDXXyyU
295 csbeq1 k=yk/xB=y/xB
296 167 295 eqtr3id k=yC=y/xB
297 296 breq1d k=yCX/xBy/xBX/xB
298 294 297 imbi12d k=yφXSkSDXXkkUCX/xBφXSySDXXyyUy/xBX/xB
299 simp2l φXSkSDXXkkUXS
300 nfv xφXSkSDXXkkU
301 nfcsb1v _xX/xB
302 173 174 301 nfbr xCX/xB
303 300 302 nfim xφXSkSDXXkkUCX/xB
304 eleq1 x=XxSXS
305 304 anbi1d x=XxSkSXSkS
306 breq2 x=XDxDX
307 breq1 x=XxkXk
308 306 307 3anbi12d x=XDxxkkUDXXkkU
309 305 308 3anbi23d x=XφxSkSDxxkkUφXSkSDXXkkU
310 csbeq1a x=XB=X/xB
311 310 breq2d x=XCBCX/xB
312 309 311 imbi12d x=XφxSkSDxxkkUCBφXSkSDXXkkUCX/xB
313 303 312 13 vtoclg1f XSφXSkSDXXkkUCX/xB
314 299 313 mpcom φXSkSDXXkkUCX/xB
315 288 298 314 vtocl φXSySDXXyyUy/xBX/xB
316 145 283 146 154 155 287 315 syl123anc φyXYy/xBX/xB
317 144 316 sylan2 φyXYy/xBX/xB
318 oveq2 y=XX/xBy=X/xBX
319 oveq2 y=YX/xBy=X/xBY
320 29 23 136 143 278 282 317 193 195 18 62 318 46 319 dvle φY/xAX/xAX/xBYX/xBX
321 268 79 80 subdid φX/xBYX=X/xBYX/xBX
322 320 321 breqtrrd φY/xAX/xAX/xBYX
323 55 64 274 322 subled φY/xAX/xBYXX/xA
324 273 323 eqbrtrd φX-X-1X/xBY-X-1X/xBY/xAX/xA
325 247 252 64 324 subled φX-X-1X/xBX/xAY-X-1X/xBY/xA
326 250 renegcld φY-X-1
327 1red φ1
328 23 31 327 lesubadd2d φYX1YX+1
329 20 328 mpbird φYX1
330 32 327 suble0d φY-X-10YX1
331 329 330 mpbird φY-X-10
332 250 le0neg1d φY-X-100Y-X-1
333 331 332 mpbid φ0Y-X-1
334 44 60 326 333 231 lemul2ad φY-X-1Y/xBY-X-1X/xB
335 266 78 mulneg1d φY-X-1Y/xB=Y-X-1Y/xB
336 266 268 mulneg1d φY-X-1X/xB=Y-X-1X/xB
337 334 335 336 3brtr3d φY-X-1Y/xBY-X-1X/xB
338 251 253 lenegd φY-X-1X/xBY-X-1Y/xBY-X-1Y/xBY-X-1X/xB
339 337 338 mpbird φY-X-1X/xBY-X-1Y/xB
340 251 253 55 339 lesub1dd φY-X-1X/xBY/xAY-X-1Y/xBY/xA
341 248 252 254 325 340 letrd φX-X-1X/xBX/xAY-X-1Y/xBY/xA
342 210 262 268 subdird φX-X-1X/xB=XXX/xB1X/xB
343 268 mullidd φ1X/xB=X/xB
344 343 oveq2d φXXX/xB1X/xB=XXX/xBX/xB
345 342 344 eqtrd φX-X-1X/xB=XXX/xBX/xB
346 345 oveq1d φX-X-1X/xBX/xA=XXX/xB-X/xB-X/xA
347 209 262 78 subdird φY-X-1Y/xB=YXY/xB1Y/xB
348 78 mullidd φ1Y/xB=Y/xB
349 348 oveq2d φYXY/xB1Y/xB=YXY/xBY/xB
350 347 349 eqtrd φY-X-1Y/xB=YXY/xBY/xB
351 350 oveq1d φY-X-1Y/xBY/xA=YXY/xB-Y/xB-Y/xA
352 341 346 351 3brtr3d φXXX/xB-X/xB-X/xAYXY/xB-Y/xB-Y/xA
353 61 recnd φXXX/xB
354 64 recnd φX/xA
355 353 354 268 sub32d φXXX/xB-X/xA-X/xB=XXX/xB-X/xB-X/xA
356 202 203 78 sub32d φYXY/xB-Y/xA-Y/xB=YXY/xB-Y/xB-Y/xA
357 352 355 356 3brtr4d φXXX/xB-X/xA-X/xBYXY/xB-Y/xA-Y/xB
358 243 244 73 357 leadd1dd φXXX/xBX/xA-X/xB+k=MXCYXY/xBY/xA-Y/xB+k=MXC
359 65 recnd φXXX/xBX/xA
360 73 recnd φk=MXC
361 359 360 268 addsubd φXXX/xBX/xA+k=MXC-X/xB=XXX/xBX/xA-X/xB+k=MXC
362 56 recnd φYXY/xBY/xA
363 362 360 78 addsubd φYXY/xBY/xA+k=MXC-Y/xB=YXY/xBY/xA-Y/xB+k=MXC
364 358 361 363 3brtr4d φXXX/xBX/xA+k=MXC-X/xBYXY/xBY/xA+k=MXC-Y/xB
365 241 oveq1d φHXX/xB=XXX/xBX/xA+k=MXC-X/xB
366 236 oveq1d φHYY/xB=YXY/xBY/xA+k=MXC-Y/xB
367 364 365 366 3brtr4d φHXX/xBHYY/xB
368 242 367 jca φHYHXHXX/xBHYY/xB