Metamath Proof Explorer


Theorem dvfsumrlim

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if x e. S |-> B is a decreasing function with antiderivative A converging to zero, then the difference between sum_ k e. ( M ... ( |_x ) ) B ( k ) and A ( x ) = S. u e. ( M , x ) B ( u ) _d u converges to a constant limit value, with the remainder term bounded by B ( x ) . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S = T +∞
dvfsum.z Z = M
dvfsum.m φ M
dvfsum.d φ D
dvfsum.md φ M D + 1
dvfsum.t φ T
dvfsum.a φ x S A
dvfsum.b1 φ x S B V
dvfsum.b2 φ x Z B
dvfsum.b3 φ dx S A d x = x S B
dvfsum.c x = k B = C
dvfsumrlim.l φ x S k S D x x k C B
dvfsumrlim.g G = x S k = M x C A
dvfsumrlim.k φ x S B 0
Assertion dvfsumrlim φ G dom

Proof

Step Hyp Ref Expression
1 dvfsum.s S = T +∞
2 dvfsum.z Z = M
3 dvfsum.m φ M
4 dvfsum.d φ D
5 dvfsum.md φ M D + 1
6 dvfsum.t φ T
7 dvfsum.a φ x S A
8 dvfsum.b1 φ x S B V
9 dvfsum.b2 φ x Z B
10 dvfsum.b3 φ dx S A d x = x S B
11 dvfsum.c x = k B = C
12 dvfsumrlim.l φ x S k S D x x k C B
13 dvfsumrlim.g G = x S k = M x C A
14 dvfsumrlim.k φ x S B 0
15 ioossre T +∞
16 1 15 eqsstri S
17 16 a1i φ S
18 1 2 3 4 5 6 7 8 9 10 11 13 dvfsumrlimf φ G : S
19 ax-resscn
20 fss G : S G : S
21 18 19 20 sylancl φ G : S
22 1 supeq1i sup S * < = sup T +∞ * <
23 ressxr *
24 23 6 sselid φ T *
25 6 renepnfd φ T +∞
26 ioopnfsup T * T +∞ sup T +∞ * < = +∞
27 24 25 26 syl2anc φ sup T +∞ * < = +∞
28 22 27 eqtrid φ sup S * < = +∞
29 8 14 rlimmptrcl φ x S B
30 29 ralrimiva φ x S B
31 30 17 rlim0 φ x S B 0 e + c x S c x B < e
32 14 31 mpbid φ e + c x S c x B < e
33 16 a1i φ e + S
34 peano2re T T + 1
35 6 34 syl φ T + 1
36 35 4 ifcld φ if D T + 1 T + 1 D
37 36 adantr φ e + if D T + 1 T + 1 D
38 rexico S if D T + 1 T + 1 D c if D T + 1 T + 1 D +∞ x S c x B < e c x S c x B < e
39 33 37 38 syl2anc φ e + c if D T + 1 T + 1 D +∞ x S c x B < e c x S c x B < e
40 elicopnf if D T + 1 T + 1 D c if D T + 1 T + 1 D +∞ c if D T + 1 T + 1 D c
41 36 40 syl φ c if D T + 1 T + 1 D +∞ c if D T + 1 T + 1 D c
42 41 simprbda φ c if D T + 1 T + 1 D +∞ c
43 6 adantr φ c if D T + 1 T + 1 D +∞ T
44 43 34 syl φ c if D T + 1 T + 1 D +∞ T + 1
45 43 ltp1d φ c if D T + 1 T + 1 D +∞ T < T + 1
46 41 simplbda φ c if D T + 1 T + 1 D +∞ if D T + 1 T + 1 D c
47 4 adantr φ c if D T + 1 T + 1 D +∞ D
48 maxle D T + 1 c if D T + 1 T + 1 D c D c T + 1 c
49 47 44 42 48 syl3anc φ c if D T + 1 T + 1 D +∞ if D T + 1 T + 1 D c D c T + 1 c
50 46 49 mpbid φ c if D T + 1 T + 1 D +∞ D c T + 1 c
51 50 simprd φ c if D T + 1 T + 1 D +∞ T + 1 c
52 43 44 42 45 51 ltletrd φ c if D T + 1 T + 1 D +∞ T < c
53 24 adantr φ c if D T + 1 T + 1 D +∞ T *
54 elioopnf T * c T +∞ c T < c
55 53 54 syl φ c if D T + 1 T + 1 D +∞ c T +∞ c T < c
56 42 52 55 mpbir2and φ c if D T + 1 T + 1 D +∞ c T +∞
57 56 1 eleqtrrdi φ c if D T + 1 T + 1 D +∞ c S
58 50 simpld φ c if D T + 1 T + 1 D +∞ D c
59 57 58 jca φ c if D T + 1 T + 1 D +∞ c S D c
60 59 adantlr φ e + c if D T + 1 T + 1 D +∞ c S D c
61 simprrl φ e + c S D c c S
62 61 adantrr φ e + c S D c y S c y c S
63 16 62 sselid φ e + c S D c y S c y c
64 63 leidd φ e + c S D c y S c y c c
65 nfv x c c
66 nfcv _ x abs
67 nfcsb1v _ x c / x B
68 66 67 nffv _ x c / x B
69 nfcv _ x <
70 nfcv _ x e
71 68 69 70 nfbr x c / x B < e
72 65 71 nfim x c c c / x B < e
73 breq2 x = c c x c c
74 csbeq1a x = c B = c / x B
75 74 fveq2d x = c B = c / x B
76 75 breq1d x = c B < e c / x B < e
77 73 76 imbi12d x = c c x B < e c c c / x B < e
78 72 77 rspc c S x S c x B < e c c c / x B < e
79 62 78 syl φ e + c S D c y S c y x S c x B < e c c c / x B < e
80 64 79 mpid φ e + c S D c y S c y x S c x B < e c / x B < e
81 17 7 8 10 dvmptrecl φ x S B
82 81 adantrr φ x S D x B
83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dvfsumrlimge0 φ x S D x 0 B
84 elrege0 B 0 +∞ B 0 B
85 82 83 84 sylanbrc φ x S D x B 0 +∞
86 85 expr φ x S D x B 0 +∞
87 86 ralrimiva φ x S D x B 0 +∞
88 87 adantr φ e + c S D c y S c y x S D x B 0 +∞
89 simprrr φ e + c S D c D c
90 89 adantrr φ e + c S D c y S c y D c
91 nfv x D c
92 67 nfel1 x c / x B 0 +∞
93 91 92 nfim x D c c / x B 0 +∞
94 breq2 x = c D x D c
95 74 eleq1d x = c B 0 +∞ c / x B 0 +∞
96 94 95 imbi12d x = c D x B 0 +∞ D c c / x B 0 +∞
97 93 96 rspc c S x S D x B 0 +∞ D c c / x B 0 +∞
98 62 88 90 97 syl3c φ e + c S D c y S c y c / x B 0 +∞
99 elrege0 c / x B 0 +∞ c / x B 0 c / x B
100 98 99 sylib φ e + c S D c y S c y c / x B 0 c / x B
101 absid c / x B 0 c / x B c / x B = c / x B
102 100 101 syl φ e + c S D c y S c y c / x B = c / x B
103 102 breq1d φ e + c S D c y S c y c / x B < e c / x B < e
104 3 adantr φ e + c S D c y S c y M
105 4 adantr φ e + c S D c y S c y D
106 5 adantr φ e + c S D c y S c y M D + 1
107 6 adantr φ e + c S D c y S c y T
108 7 adantlr φ e + c S D c y S c y x S A
109 8 adantlr φ e + c S D c y S c y x S B V
110 9 adantlr φ e + c S D c y S c y x Z B
111 10 adantr φ e + c S D c y S c y dx S A d x = x S B
112 pnfxr +∞ *
113 112 a1i φ e + c S D c y S c y +∞ *
114 3simpa D x x k k +∞ D x x k
115 114 12 syl3an3 φ x S k S D x x k k +∞ C B
116 115 3adant1r φ e + c S D c y S c y x S k S D x x k k +∞ C B
117 83 3adantr3 φ x S D x x +∞ 0 B
118 117 adantlr φ e + c S D c y S c y x S D x x +∞ 0 B
119 simprrl φ e + c S D c y S c y y S
120 simprrr φ e + c S D c y S c y c y
121 16 23 sstri S *
122 121 119 sselid φ e + c S D c y S c y y *
123 pnfge y * y +∞
124 122 123 syl φ e + c S D c y S c y y +∞
125 1 2 104 105 106 107 108 109 110 111 11 113 116 13 118 62 119 90 120 124 dvfsumlem4 φ e + c S D c y S c y G y G c c / x B
126 21 adantr φ e + c S D c y S c y G : S
127 126 119 ffvelrnd φ e + c S D c y S c y G y
128 126 62 ffvelrnd φ e + c S D c y S c y G c
129 127 128 subcld φ e + c S D c y S c y G y G c
130 129 abscld φ e + c S D c y S c y G y G c
131 100 simpld φ e + c S D c y S c y c / x B
132 simprll φ e + c S D c y S c y e +
133 132 rpred φ e + c S D c y S c y e
134 lelttr G y G c c / x B e G y G c c / x B c / x B < e G y G c < e
135 130 131 133 134 syl3anc φ e + c S D c y S c y G y G c c / x B c / x B < e G y G c < e
136 125 135 mpand φ e + c S D c y S c y c / x B < e G y G c < e
137 103 136 sylbid φ e + c S D c y S c y c / x B < e G y G c < e
138 80 137 syld φ e + c S D c y S c y x S c x B < e G y G c < e
139 138 anassrs φ e + c S D c y S c y x S c x B < e G y G c < e
140 139 expr φ e + c S D c y S c y x S c x B < e G y G c < e
141 140 com23 φ e + c S D c y S x S c x B < e c y G y G c < e
142 141 ralrimdva φ e + c S D c x S c x B < e y S c y G y G c < e
143 142 61 jctild φ e + c S D c x S c x B < e c S y S c y G y G c < e
144 143 anassrs φ e + c S D c x S c x B < e c S y S c y G y G c < e
145 60 144 syldan φ e + c if D T + 1 T + 1 D +∞ x S c x B < e c S y S c y G y G c < e
146 145 expimpd φ e + c if D T + 1 T + 1 D +∞ x S c x B < e c S y S c y G y G c < e
147 146 reximdv2 φ e + c if D T + 1 T + 1 D +∞ x S c x B < e c S y S c y G y G c < e
148 39 147 sylbird φ e + c x S c x B < e c S y S c y G y G c < e
149 148 ralimdva φ e + c x S c x B < e e + c S y S c y G y G c < e
150 32 149 mpd φ e + c S y S c y G y G c < e
151 17 21 28 150 caucvgr φ G dom