| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsum.s |
|
| 2 |
|
dvfsum.z |
|
| 3 |
|
dvfsum.m |
|
| 4 |
|
dvfsum.d |
|
| 5 |
|
dvfsum.md |
|
| 6 |
|
dvfsum.t |
|
| 7 |
|
dvfsum.a |
|
| 8 |
|
dvfsum.b1 |
|
| 9 |
|
dvfsum.b2 |
|
| 10 |
|
dvfsum.b3 |
|
| 11 |
|
dvfsum.c |
|
| 12 |
|
dvfsumrlim.l |
|
| 13 |
|
dvfsumrlim.g |
|
| 14 |
|
dvfsumrlim.k |
|
| 15 |
|
ioossre |
|
| 16 |
1 15
|
eqsstri |
|
| 17 |
16
|
a1i |
|
| 18 |
1 2 3 4 5 6 7 8 9 10 11 13
|
dvfsumrlimf |
|
| 19 |
|
ax-resscn |
|
| 20 |
|
fss |
|
| 21 |
18 19 20
|
sylancl |
|
| 22 |
1
|
supeq1i |
|
| 23 |
|
ressxr |
|
| 24 |
23 6
|
sselid |
|
| 25 |
6
|
renepnfd |
|
| 26 |
|
ioopnfsup |
|
| 27 |
24 25 26
|
syl2anc |
|
| 28 |
22 27
|
eqtrid |
|
| 29 |
8 14
|
rlimmptrcl |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
30 17
|
rlim0 |
|
| 32 |
14 31
|
mpbid |
|
| 33 |
16
|
a1i |
|
| 34 |
|
peano2re |
|
| 35 |
6 34
|
syl |
|
| 36 |
35 4
|
ifcld |
|
| 37 |
36
|
adantr |
|
| 38 |
|
rexico |
|
| 39 |
33 37 38
|
syl2anc |
|
| 40 |
|
elicopnf |
|
| 41 |
36 40
|
syl |
|
| 42 |
41
|
simprbda |
|
| 43 |
6
|
adantr |
|
| 44 |
43 34
|
syl |
|
| 45 |
43
|
ltp1d |
|
| 46 |
41
|
simplbda |
|
| 47 |
4
|
adantr |
|
| 48 |
|
maxle |
|
| 49 |
47 44 42 48
|
syl3anc |
|
| 50 |
46 49
|
mpbid |
|
| 51 |
50
|
simprd |
|
| 52 |
43 44 42 45 51
|
ltletrd |
|
| 53 |
24
|
adantr |
|
| 54 |
|
elioopnf |
|
| 55 |
53 54
|
syl |
|
| 56 |
42 52 55
|
mpbir2and |
|
| 57 |
56 1
|
eleqtrrdi |
|
| 58 |
50
|
simpld |
|
| 59 |
57 58
|
jca |
|
| 60 |
59
|
adantlr |
|
| 61 |
|
simprrl |
|
| 62 |
61
|
adantrr |
|
| 63 |
16 62
|
sselid |
|
| 64 |
63
|
leidd |
|
| 65 |
|
nfv |
|
| 66 |
|
nfcv |
|
| 67 |
|
nfcsb1v |
|
| 68 |
66 67
|
nffv |
|
| 69 |
|
nfcv |
|
| 70 |
|
nfcv |
|
| 71 |
68 69 70
|
nfbr |
|
| 72 |
65 71
|
nfim |
|
| 73 |
|
breq2 |
|
| 74 |
|
csbeq1a |
|
| 75 |
74
|
fveq2d |
|
| 76 |
75
|
breq1d |
|
| 77 |
73 76
|
imbi12d |
|
| 78 |
72 77
|
rspc |
|
| 79 |
62 78
|
syl |
|
| 80 |
64 79
|
mpid |
|
| 81 |
17 7 8 10
|
dvmptrecl |
|
| 82 |
81
|
adantrr |
|
| 83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dvfsumrlimge0 |
|
| 84 |
|
elrege0 |
|
| 85 |
82 83 84
|
sylanbrc |
|
| 86 |
85
|
expr |
|
| 87 |
86
|
ralrimiva |
|
| 88 |
87
|
adantr |
|
| 89 |
|
simprrr |
|
| 90 |
89
|
adantrr |
|
| 91 |
|
nfv |
|
| 92 |
67
|
nfel1 |
|
| 93 |
91 92
|
nfim |
|
| 94 |
|
breq2 |
|
| 95 |
74
|
eleq1d |
|
| 96 |
94 95
|
imbi12d |
|
| 97 |
93 96
|
rspc |
|
| 98 |
62 88 90 97
|
syl3c |
|
| 99 |
|
elrege0 |
|
| 100 |
98 99
|
sylib |
|
| 101 |
|
absid |
|
| 102 |
100 101
|
syl |
|
| 103 |
102
|
breq1d |
|
| 104 |
3
|
adantr |
|
| 105 |
4
|
adantr |
|
| 106 |
5
|
adantr |
|
| 107 |
6
|
adantr |
|
| 108 |
7
|
adantlr |
|
| 109 |
8
|
adantlr |
|
| 110 |
9
|
adantlr |
|
| 111 |
10
|
adantr |
|
| 112 |
|
pnfxr |
|
| 113 |
112
|
a1i |
|
| 114 |
|
3simpa |
|
| 115 |
114 12
|
syl3an3 |
|
| 116 |
115
|
3adant1r |
|
| 117 |
83
|
3adantr3 |
|
| 118 |
117
|
adantlr |
|
| 119 |
|
simprrl |
|
| 120 |
|
simprrr |
|
| 121 |
16 23
|
sstri |
|
| 122 |
121 119
|
sselid |
|
| 123 |
|
pnfge |
|
| 124 |
122 123
|
syl |
|
| 125 |
1 2 104 105 106 107 108 109 110 111 11 113 116 13 118 62 119 90 120 124
|
dvfsumlem4 |
|
| 126 |
21
|
adantr |
|
| 127 |
126 119
|
ffvelcdmd |
|
| 128 |
126 62
|
ffvelcdmd |
|
| 129 |
127 128
|
subcld |
|
| 130 |
129
|
abscld |
|
| 131 |
100
|
simpld |
|
| 132 |
|
simprll |
|
| 133 |
132
|
rpred |
|
| 134 |
|
lelttr |
|
| 135 |
130 131 133 134
|
syl3anc |
|
| 136 |
125 135
|
mpand |
|
| 137 |
103 136
|
sylbid |
|
| 138 |
80 137
|
syld |
|
| 139 |
138
|
anassrs |
|
| 140 |
139
|
expr |
|
| 141 |
140
|
com23 |
|
| 142 |
141
|
ralrimdva |
|
| 143 |
142 61
|
jctild |
|
| 144 |
143
|
anassrs |
|
| 145 |
60 144
|
syldan |
|
| 146 |
145
|
expimpd |
|
| 147 |
146
|
reximdv2 |
|
| 148 |
39 147
|
sylbird |
|
| 149 |
148
|
ralimdva |
|
| 150 |
32 149
|
mpd |
|
| 151 |
17 21 28 150
|
caucvgr |
|