Metamath Proof Explorer


Theorem dvfsumrlimge0

Description: Lemma for dvfsumrlim . Satisfy the assumption of dvfsumlem4 . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S = T +∞
dvfsum.z Z = M
dvfsum.m φ M
dvfsum.d φ D
dvfsum.md φ M D + 1
dvfsum.t φ T
dvfsum.a φ x S A
dvfsum.b1 φ x S B V
dvfsum.b2 φ x Z B
dvfsum.b3 φ dx S A d x = x S B
dvfsum.c x = k B = C
dvfsumrlim.l φ x S k S D x x k C B
dvfsumrlim.g G = x S k = M x C A
dvfsumrlim.k φ x S B 0
Assertion dvfsumrlimge0 φ x S D x 0 B

Proof

Step Hyp Ref Expression
1 dvfsum.s S = T +∞
2 dvfsum.z Z = M
3 dvfsum.m φ M
4 dvfsum.d φ D
5 dvfsum.md φ M D + 1
6 dvfsum.t φ T
7 dvfsum.a φ x S A
8 dvfsum.b1 φ x S B V
9 dvfsum.b2 φ x Z B
10 dvfsum.b3 φ dx S A d x = x S B
11 dvfsum.c x = k B = C
12 dvfsumrlim.l φ x S k S D x x k C B
13 dvfsumrlim.g G = x S k = M x C A
14 dvfsumrlim.k φ x S B 0
15 ioossre T +∞
16 1 15 eqsstri S
17 simprl φ x S D x x S
18 16 17 sseldi φ x S D x x
19 18 rexrd φ x S D x x *
20 18 renepnfd φ x S D x x +∞
21 icopnfsup x * x +∞ sup x +∞ * < = +∞
22 19 20 21 syl2anc φ x S D x sup x +∞ * < = +∞
23 6 rexrd φ T *
24 17 1 eleqtrdi φ x S D x x T +∞
25 23 adantr φ x S D x T *
26 elioopnf T * x T +∞ x T < x
27 25 26 syl φ x S D x x T +∞ x T < x
28 24 27 mpbid φ x S D x x T < x
29 28 simprd φ x S D x T < x
30 df-ioo . = u * , v * w * | u < w w < v
31 df-ico . = u * , v * w * | u w w < v
32 xrltletr T * x * z * T < x x z T < z
33 30 31 32 ixxss1 T * T < x x +∞ T +∞
34 23 29 33 syl2an2r φ x S D x x +∞ T +∞
35 34 1 sseqtrrdi φ x S D x x +∞ S
36 11 cbvmptv x S B = k S C
37 14 adantr φ x S D x x S B 0
38 36 37 eqbrtrrid φ x S D x k S C 0
39 35 38 rlimres2 φ x S D x k x +∞ C 0
40 16 a1i φ S
41 40 7 8 10 dvmptrecl φ x S B
42 41 adantrr φ x S D x B
43 42 recnd φ x S D x B
44 rlimconst S B k S B B
45 40 43 44 syl2an2r φ x S D x k S B B
46 35 45 rlimres2 φ x S D x k x +∞ B B
47 41 ralrimiva φ x S B
48 47 adantr φ x S D x x S B
49 35 sselda φ x S D x k x +∞ k S
50 11 eleq1d x = k B C
51 50 rspccva x S B k S C
52 48 49 51 syl2an2r φ x S D x k x +∞ C
53 42 adantr φ x S D x k x +∞ B
54 simpll φ x S D x k x +∞ φ
55 simplrl φ x S D x k x +∞ x S
56 simplrr φ x S D x k x +∞ D x
57 elicopnf x k x +∞ k x k
58 18 57 syl φ x S D x k x +∞ k x k
59 58 simplbda φ x S D x k x +∞ x k
60 54 55 49 56 59 12 syl122anc φ x S D x k x +∞ C B
61 22 39 46 52 53 60 rlimle φ x S D x 0 B