| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsum.s |
|- S = ( T (,) +oo ) |
| 2 |
|
dvfsum.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
dvfsum.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
dvfsum.d |
|- ( ph -> D e. RR ) |
| 5 |
|
dvfsum.md |
|- ( ph -> M <_ ( D + 1 ) ) |
| 6 |
|
dvfsum.t |
|- ( ph -> T e. RR ) |
| 7 |
|
dvfsum.a |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
| 8 |
|
dvfsum.b1 |
|- ( ( ph /\ x e. S ) -> B e. V ) |
| 9 |
|
dvfsum.b2 |
|- ( ( ph /\ x e. Z ) -> B e. RR ) |
| 10 |
|
dvfsum.b3 |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
| 11 |
|
dvfsum.c |
|- ( x = k -> B = C ) |
| 12 |
|
dvfsumrlim.l |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
| 13 |
|
dvfsumrlim.g |
|- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
| 14 |
|
dvfsumrlim.k |
|- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
| 15 |
|
ioossre |
|- ( T (,) +oo ) C_ RR |
| 16 |
1 15
|
eqsstri |
|- S C_ RR |
| 17 |
|
simprl |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x e. S ) |
| 18 |
16 17
|
sselid |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x e. RR ) |
| 19 |
18
|
rexrd |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x e. RR* ) |
| 20 |
18
|
renepnfd |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x =/= +oo ) |
| 21 |
|
icopnfsup |
|- ( ( x e. RR* /\ x =/= +oo ) -> sup ( ( x [,) +oo ) , RR* , < ) = +oo ) |
| 22 |
19 20 21
|
syl2anc |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> sup ( ( x [,) +oo ) , RR* , < ) = +oo ) |
| 23 |
6
|
rexrd |
|- ( ph -> T e. RR* ) |
| 24 |
17 1
|
eleqtrdi |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x e. ( T (,) +oo ) ) |
| 25 |
23
|
adantr |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> T e. RR* ) |
| 26 |
|
elioopnf |
|- ( T e. RR* -> ( x e. ( T (,) +oo ) <-> ( x e. RR /\ T < x ) ) ) |
| 27 |
25 26
|
syl |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x e. ( T (,) +oo ) <-> ( x e. RR /\ T < x ) ) ) |
| 28 |
24 27
|
mpbid |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x e. RR /\ T < x ) ) |
| 29 |
28
|
simprd |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> T < x ) |
| 30 |
|
df-ioo |
|- (,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w < v ) } ) |
| 31 |
|
df-ico |
|- [,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u <_ w /\ w < v ) } ) |
| 32 |
|
xrltletr |
|- ( ( T e. RR* /\ x e. RR* /\ z e. RR* ) -> ( ( T < x /\ x <_ z ) -> T < z ) ) |
| 33 |
30 31 32
|
ixxss1 |
|- ( ( T e. RR* /\ T < x ) -> ( x [,) +oo ) C_ ( T (,) +oo ) ) |
| 34 |
23 29 33
|
syl2an2r |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x [,) +oo ) C_ ( T (,) +oo ) ) |
| 35 |
34 1
|
sseqtrrdi |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x [,) +oo ) C_ S ) |
| 36 |
11
|
cbvmptv |
|- ( x e. S |-> B ) = ( k e. S |-> C ) |
| 37 |
14
|
adantr |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x e. S |-> B ) ~~>r 0 ) |
| 38 |
36 37
|
eqbrtrrid |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. S |-> C ) ~~>r 0 ) |
| 39 |
35 38
|
rlimres2 |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. ( x [,) +oo ) |-> C ) ~~>r 0 ) |
| 40 |
16
|
a1i |
|- ( ph -> S C_ RR ) |
| 41 |
40 7 8 10
|
dvmptrecl |
|- ( ( ph /\ x e. S ) -> B e. RR ) |
| 42 |
41
|
adantrr |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> B e. RR ) |
| 43 |
42
|
recnd |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> B e. CC ) |
| 44 |
|
rlimconst |
|- ( ( S C_ RR /\ B e. CC ) -> ( k e. S |-> B ) ~~>r B ) |
| 45 |
40 43 44
|
syl2an2r |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. S |-> B ) ~~>r B ) |
| 46 |
35 45
|
rlimres2 |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. ( x [,) +oo ) |-> B ) ~~>r B ) |
| 47 |
41
|
ralrimiva |
|- ( ph -> A. x e. S B e. RR ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> A. x e. S B e. RR ) |
| 49 |
35
|
sselda |
|- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> k e. S ) |
| 50 |
11
|
eleq1d |
|- ( x = k -> ( B e. RR <-> C e. RR ) ) |
| 51 |
50
|
rspccva |
|- ( ( A. x e. S B e. RR /\ k e. S ) -> C e. RR ) |
| 52 |
48 49 51
|
syl2an2r |
|- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> C e. RR ) |
| 53 |
42
|
adantr |
|- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> B e. RR ) |
| 54 |
|
simpll |
|- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> ph ) |
| 55 |
|
simplrl |
|- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> x e. S ) |
| 56 |
|
simplrr |
|- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> D <_ x ) |
| 57 |
|
elicopnf |
|- ( x e. RR -> ( k e. ( x [,) +oo ) <-> ( k e. RR /\ x <_ k ) ) ) |
| 58 |
18 57
|
syl |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. ( x [,) +oo ) <-> ( k e. RR /\ x <_ k ) ) ) |
| 59 |
58
|
simplbda |
|- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> x <_ k ) |
| 60 |
54 55 49 56 59 12
|
syl122anc |
|- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> C <_ B ) |
| 61 |
22 39 46 52 53 60
|
rlimle |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |