Metamath Proof Explorer


Theorem dvfsumlem4

Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S=T+∞
dvfsum.z Z=M
dvfsum.m φM
dvfsum.d φD
dvfsum.md φMD+1
dvfsum.t φT
dvfsum.a φxSA
dvfsum.b1 φxSBV
dvfsum.b2 φxZB
dvfsum.b3 φdxSAdx=xSB
dvfsum.c x=kB=C
dvfsum.u φU*
dvfsum.l φxSkSDxxkkUCB
dvfsumlem4.g G=xSk=MxCA
dvfsumlem4.0 φxSDxxU0B
dvfsumlem4.1 φXS
dvfsumlem4.2 φYS
dvfsumlem4.3 φDX
dvfsumlem4.4 φXY
dvfsumlem4.5 φYU
Assertion dvfsumlem4 φGYGXX/xB

Proof

Step Hyp Ref Expression
1 dvfsum.s S=T+∞
2 dvfsum.z Z=M
3 dvfsum.m φM
4 dvfsum.d φD
5 dvfsum.md φMD+1
6 dvfsum.t φT
7 dvfsum.a φxSA
8 dvfsum.b1 φxSBV
9 dvfsum.b2 φxZB
10 dvfsum.b3 φdxSAdx=xSB
11 dvfsum.c x=kB=C
12 dvfsum.u φU*
13 dvfsum.l φxSkSDxxkkUCB
14 dvfsumlem4.g G=xSk=MxCA
15 dvfsumlem4.0 φxSDxxU0B
16 dvfsumlem4.1 φXS
17 dvfsumlem4.2 φYS
18 dvfsumlem4.3 φDX
19 dvfsumlem4.4 φXY
20 dvfsumlem4.5 φYU
21 fzfid φMYFin
22 9 ralrimiva φxZB
23 elfzuz kMYkM
24 23 2 eleqtrrdi kMYkZ
25 11 eleq1d x=kBC
26 25 rspccva xZBkZC
27 22 24 26 syl2an φkMYC
28 21 27 fsumrecl φk=MYC
29 7 ralrimiva φxSA
30 nfcsb1v _xY/xA
31 30 nfel1 xY/xA
32 csbeq1a x=YA=Y/xA
33 32 eleq1d x=YAY/xA
34 31 33 rspc YSxSAY/xA
35 17 29 34 sylc φY/xA
36 28 35 resubcld φk=MYCY/xA
37 nfcv _xY
38 nfcv _xk=MYC
39 nfcv _x
40 38 39 30 nfov _xk=MYCY/xA
41 fveq2 x=Yx=Y
42 41 oveq2d x=YMx=MY
43 42 sumeq1d x=Yk=MxC=k=MYC
44 43 32 oveq12d x=Yk=MxCA=k=MYCY/xA
45 37 40 44 14 fvmptf YSk=MYCY/xAGY=k=MYCY/xA
46 17 36 45 syl2anc φGY=k=MYCY/xA
47 fzfid φMXFin
48 elfzuz kMXkM
49 48 2 eleqtrrdi kMXkZ
50 22 49 26 syl2an φkMXC
51 47 50 fsumrecl φk=MXC
52 nfcsb1v _xX/xA
53 52 nfel1 xX/xA
54 csbeq1a x=XA=X/xA
55 54 eleq1d x=XAX/xA
56 53 55 rspc XSxSAX/xA
57 16 29 56 sylc φX/xA
58 51 57 resubcld φk=MXCX/xA
59 nfcv _xX
60 nfcv _xk=MXC
61 60 39 52 nfov _xk=MXCX/xA
62 fveq2 x=Xx=X
63 62 oveq2d x=XMx=MX
64 63 sumeq1d x=Xk=MxC=k=MXC
65 64 54 oveq12d x=Xk=MxCA=k=MXCX/xA
66 59 61 65 14 fvmptf XSk=MXCX/xAGX=k=MXCX/xA
67 16 58 66 syl2anc φGX=k=MXCX/xA
68 46 67 oveq12d φGYGX=k=MYC-Y/xA-k=MXCX/xA
69 68 fveq2d φGYGX=k=MYC-Y/xA-k=MXCX/xA
70 ioossre T+∞
71 1 70 eqsstri S
72 71 a1i φS
73 72 7 8 10 dvmptrecl φxSB
74 73 ralrimiva φxSB
75 nfv mB
76 nfcsb1v _xm/xB
77 76 nfel1 xm/xB
78 csbeq1a x=mB=m/xB
79 78 eleq1d x=mBm/xB
80 75 77 79 cbvralw xSBmSm/xB
81 74 80 sylib φmSm/xB
82 csbeq1 m=Xm/xB=X/xB
83 82 eleq1d m=Xm/xBX/xB
84 83 rspcv XSmSm/xBX/xB
85 16 81 84 sylc φX/xB
86 58 85 resubcld φk=MXC-X/xA-X/xB
87 71 16 sselid φX
88 reflcl XX
89 87 88 syl φX
90 87 89 resubcld φXX
91 90 85 remulcld φXXX/xB
92 91 58 readdcld φXXX/xB+k=MXC-X/xA
93 92 85 resubcld φXXX/xB+k=MXCX/xA-X/xB
94 fracge0 X0XX
95 87 94 syl φ0XX
96 87 rexrd φX*
97 71 17 sselid φY
98 97 rexrd φY*
99 96 98 12 19 20 xrletrd φXU
100 16 18 99 3jca φXSDXXU
101 simpr1 φXSDXXUXS
102 nfv xφXSDXXU
103 nfcv _x0
104 nfcv _x
105 nfcsb1v _xX/xB
106 103 104 105 nfbr x0X/xB
107 102 106 nfim xφXSDXXU0X/xB
108 eleq1 x=XxSXS
109 breq2 x=XDxDX
110 breq1 x=XxUXU
111 108 109 110 3anbi123d x=XxSDxxUXSDXXU
112 111 anbi2d x=XφxSDxxUφXSDXXU
113 csbeq1a x=XB=X/xB
114 113 breq2d x=X0B0X/xB
115 112 114 imbi12d x=XφxSDxxU0BφXSDXXU0X/xB
116 107 115 15 vtoclg1f XSφXSDXXU0X/xB
117 101 116 mpcom φXSDXXU0X/xB
118 100 117 mpdan φ0X/xB
119 90 85 95 118 mulge0d φ0XXX/xB
120 58 91 addge02d φ0XXX/xBk=MXCX/xAXXX/xB+k=MXC-X/xA
121 119 120 mpbid φk=MXCX/xAXXX/xB+k=MXC-X/xA
122 58 92 85 121 lesub1dd φk=MXC-X/xA-X/xBXXX/xB+k=MXCX/xA-X/xB
123 reflcl YY
124 97 123 syl φY
125 97 124 resubcld φYY
126 csbeq1 m=Ym/xB=Y/xB
127 126 eleq1d m=Ym/xBY/xB
128 127 rspcv YSmSm/xBY/xB
129 17 81 128 sylc φY/xB
130 125 129 remulcld φYYY/xB
131 130 36 readdcld φYYY/xB+k=MYC-Y/xA
132 131 129 resubcld φYYY/xB+k=MYCY/xA-Y/xB
133 eqid xSxxB+k=MxC-A=xSxxB+k=MxC-A
134 1 2 3 4 5 6 7 8 9 10 11 12 13 133 16 17 18 19 20 dvfsumlem3 φxSxxB+k=MxC-AYxSxxB+k=MxC-AXxSxxB+k=MxC-AXX/xBxSxxB+k=MxC-AYY/xB
135 134 simprd φxSxxB+k=MxC-AXX/xBxSxxB+k=MxC-AYY/xB
136 nfcv _xXX
137 nfcv _x×
138 136 137 105 nfov _xXXX/xB
139 nfcv _x+
140 138 139 61 nfov _xXXX/xB+k=MXC-X/xA
141 id x=Xx=X
142 141 62 oveq12d x=Xxx=XX
143 142 113 oveq12d x=XxxB=XXX/xB
144 143 65 oveq12d x=XxxB+k=MxC-A=XXX/xB+k=MXC-X/xA
145 59 140 144 133 fvmptf XSXXX/xB+k=MXC-X/xAxSxxB+k=MxC-AX=XXX/xB+k=MXC-X/xA
146 16 92 145 syl2anc φxSxxB+k=MxC-AX=XXX/xB+k=MXC-X/xA
147 146 oveq1d φxSxxB+k=MxC-AXX/xB=XXX/xB+k=MXCX/xA-X/xB
148 nfcv _xYY
149 nfcsb1v _xY/xB
150 148 137 149 nfov _xYYY/xB
151 150 139 40 nfov _xYYY/xB+k=MYC-Y/xA
152 id x=Yx=Y
153 152 41 oveq12d x=Yxx=YY
154 csbeq1a x=YB=Y/xB
155 153 154 oveq12d x=YxxB=YYY/xB
156 155 44 oveq12d x=YxxB+k=MxC-A=YYY/xB+k=MYC-Y/xA
157 37 151 156 133 fvmptf YSYYY/xB+k=MYC-Y/xAxSxxB+k=MxC-AY=YYY/xB+k=MYC-Y/xA
158 17 131 157 syl2anc φxSxxB+k=MxC-AY=YYY/xB+k=MYC-Y/xA
159 158 oveq1d φxSxxB+k=MxC-AYY/xB=YYY/xB+k=MYCY/xA-Y/xB
160 135 147 159 3brtr3d φXXX/xB+k=MXCX/xA-X/xBYYY/xB+k=MYCY/xA-Y/xB
161 36 recnd φk=MYCY/xA
162 129 recnd φY/xB
163 130 recnd φYYY/xB
164 161 162 163 subsub3d φk=MYC-Y/xA-Y/xBYYY/xB=k=MYCY/xA+YYY/xB-Y/xB
165 161 163 addcomd φk=MYC-Y/xA+YYY/xB=YYY/xB+k=MYC-Y/xA
166 165 oveq1d φk=MYCY/xA+YYY/xB-Y/xB=YYY/xB+k=MYCY/xA-Y/xB
167 164 166 eqtrd φk=MYC-Y/xA-Y/xBYYY/xB=YYY/xB+k=MYCY/xA-Y/xB
168 1red φ1
169 4 87 97 18 19 letrd φDY
170 17 169 20 3jca φYSDYYU
171 simpr1 φYSDYYUYS
172 nfv xφYSDYYU
173 103 104 149 nfbr x0Y/xB
174 172 173 nfim xφYSDYYU0Y/xB
175 eleq1 x=YxSYS
176 breq2 x=YDxDY
177 breq1 x=YxUYU
178 175 176 177 3anbi123d x=YxSDxxUYSDYYU
179 178 anbi2d x=YφxSDxxUφYSDYYU
180 154 breq2d x=Y0B0Y/xB
181 179 180 imbi12d x=YφxSDxxU0BφYSDYYU0Y/xB
182 174 181 15 vtoclg1f YSφYSDYYU0Y/xB
183 171 182 mpcom φYSDYYU0Y/xB
184 170 183 mpdan φ0Y/xB
185 fracle1 YYY1
186 97 185 syl φYY1
187 125 168 129 184 186 lemul1ad φYYY/xB1Y/xB
188 162 mullidd φ1Y/xB=Y/xB
189 187 188 breqtrd φYYY/xBY/xB
190 129 130 subge0d φ0Y/xBYYY/xBYYY/xBY/xB
191 189 190 mpbird φ0Y/xBYYY/xB
192 129 130 resubcld φY/xBYYY/xB
193 36 192 subge02d φ0Y/xBYYY/xBk=MYC-Y/xA-Y/xBYYY/xBk=MYCY/xA
194 191 193 mpbid φk=MYC-Y/xA-Y/xBYYY/xBk=MYCY/xA
195 167 194 eqbrtrrd φYYY/xB+k=MYCY/xA-Y/xBk=MYCY/xA
196 93 132 36 160 195 letrd φXXX/xB+k=MXCX/xA-X/xBk=MYCY/xA
197 86 93 36 122 196 letrd φk=MXC-X/xA-X/xBk=MYCY/xA
198 85 58 readdcld φX/xB+k=MXC-X/xA
199 fracge0 Y0YY
200 97 199 syl φ0YY
201 125 129 200 184 mulge0d φ0YYY/xB
202 36 130 addge02d φ0YYY/xBk=MYCY/xAYYY/xB+k=MYC-Y/xA
203 201 202 mpbid φk=MYCY/xAYYY/xB+k=MYC-Y/xA
204 134 simpld φxSxxB+k=MxC-AYxSxxB+k=MxC-AX
205 204 158 146 3brtr3d φYYY/xB+k=MYC-Y/xAXXX/xB+k=MXC-X/xA
206 36 131 92 203 205 letrd φk=MYCY/xAXXX/xB+k=MXC-X/xA
207 fracle1 XXX1
208 87 207 syl φXX1
209 90 168 85 118 208 lemul1ad φXXX/xB1X/xB
210 85 recnd φX/xB
211 210 mullidd φ1X/xB=X/xB
212 209 211 breqtrd φXXX/xBX/xB
213 91 85 58 212 leadd1dd φXXX/xB+k=MXC-X/xAX/xB+k=MXC-X/xA
214 36 92 198 206 213 letrd φk=MYCY/xAX/xB+k=MXC-X/xA
215 58 recnd φk=MXCX/xA
216 210 215 addcomd φX/xB+k=MXC-X/xA=k=MXC-X/xA+X/xB
217 214 216 breqtrd φk=MYCY/xAk=MXC-X/xA+X/xB
218 36 58 85 absdifled φk=MYC-Y/xA-k=MXCX/xAX/xBk=MXC-X/xA-X/xBk=MYCY/xAk=MYCY/xAk=MXC-X/xA+X/xB
219 197 217 218 mpbir2and φk=MYC-Y/xA-k=MXCX/xAX/xB
220 69 219 eqbrtrd φGYGXX/xB