| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caucvgr.1 |
|
| 2 |
|
caucvgr.2 |
|
| 3 |
|
caucvgr.3 |
|
| 4 |
|
caucvgr.4 |
|
| 5 |
2
|
feqmptd |
|
| 6 |
2
|
ffvelcdmda |
|
| 7 |
6
|
replimd |
|
| 8 |
7
|
mpteq2dva |
|
| 9 |
5 8
|
eqtrd |
|
| 10 |
|
fvexd |
|
| 11 |
|
ovexd |
|
| 12 |
|
ref |
|
| 13 |
|
resub |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
subcl |
|
| 16 |
|
absrele |
|
| 17 |
15 16
|
syl |
|
| 18 |
14 17
|
eqbrtrrd |
|
| 19 |
1 2 3 4 12 18
|
caucvgrlem2 |
|
| 20 |
|
ax-icn |
|
| 21 |
20
|
elexi |
|
| 22 |
21
|
a1i |
|
| 23 |
|
fvexd |
|
| 24 |
|
rlimconst |
|
| 25 |
1 20 24
|
sylancl |
|
| 26 |
|
imf |
|
| 27 |
|
imsub |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
absimle |
|
| 30 |
15 29
|
syl |
|
| 31 |
28 30
|
eqbrtrrd |
|
| 32 |
1 2 3 4 26 31
|
caucvgrlem2 |
|
| 33 |
22 23 25 32
|
rlimmul |
|
| 34 |
10 11 19 33
|
rlimadd |
|
| 35 |
9 34
|
eqbrtrd |
|
| 36 |
|
rlimrel |
|
| 37 |
36
|
releldmi |
|
| 38 |
35 37
|
syl |
|