Metamath Proof Explorer


Theorem caurcvg

Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that F is a Cauchy sequence. (Contributed by NM, 4-Apr-2005) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses caurcvg.1 Z = M
caurcvg.3 φ F : Z
caurcvg.4 φ x + m Z k m F k F m < x
Assertion caurcvg φ F lim sup F

Proof

Step Hyp Ref Expression
1 caurcvg.1 Z = M
2 caurcvg.3 φ F : Z
3 caurcvg.4 φ x + m Z k m F k F m < x
4 uzssz M
5 1 4 eqsstri Z
6 zssre
7 5 6 sstri Z
8 7 a1i φ Z
9 1rp 1 +
10 9 ne0ii +
11 r19.2z + x + m Z k m F k F m < x x + m Z k m F k F m < x
12 10 3 11 sylancr φ x + m Z k m F k F m < x
13 eluzel2 m M M
14 13 1 eleq2s m Z M
15 1 uzsup M sup Z * < = +∞
16 14 15 syl m Z sup Z * < = +∞
17 16 a1d m Z k m F k F m < x sup Z * < = +∞
18 17 rexlimiv m Z k m F k F m < x sup Z * < = +∞
19 18 rexlimivw x + m Z k m F k F m < x sup Z * < = +∞
20 12 19 syl φ sup Z * < = +∞
21 5 sseli m Z m
22 5 sseli k Z k
23 eluz m k k m m k
24 21 22 23 syl2an m Z k Z k m m k
25 24 biimprd m Z k Z m k k m
26 25 expimpd m Z k Z m k k m
27 26 imim1d m Z k m F k F m < x k Z m k F k F m < x
28 27 exp4a m Z k m F k F m < x k Z m k F k F m < x
29 28 ralimdv2 m Z k m F k F m < x k Z m k F k F m < x
30 29 reximia m Z k m F k F m < x m Z k Z m k F k F m < x
31 30 ralimi x + m Z k m F k F m < x x + m Z k Z m k F k F m < x
32 3 31 syl φ x + m Z k Z m k F k F m < x
33 8 2 20 32 caurcvgr φ F lim sup F
34 14 a1d m Z k m F k F m < x M
35 34 rexlimiv m Z k m F k F m < x M
36 35 rexlimivw x + m Z k m F k F m < x M
37 12 36 syl φ M
38 ax-resscn
39 fss F : Z F : Z
40 2 38 39 sylancl φ F : Z
41 1 37 40 rlimclim φ F lim sup F F lim sup F
42 33 41 mpbid φ F lim sup F