| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caucvg.1 |
|
| 2 |
|
caurcvg2.2 |
|
| 3 |
|
caurcvg2.3 |
|
| 4 |
|
1rp |
|
| 5 |
4
|
ne0ii |
|
| 6 |
|
r19.2z |
|
| 7 |
5 3 6
|
sylancr |
|
| 8 |
|
simpl |
|
| 9 |
8
|
ralimi |
|
| 10 |
|
eqid |
|
| 11 |
|
simprr |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
eleq1d |
|
| 14 |
13
|
rspccva |
|
| 15 |
11 14
|
sylan |
|
| 16 |
15
|
fmpttd |
|
| 17 |
|
fveq2 |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
fveq2d |
|
| 21 |
20
|
breq1d |
|
| 22 |
21
|
anbi2d |
|
| 23 |
17 22
|
raleqbidv |
|
| 24 |
23
|
cbvrexvw |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
eleq1d |
|
| 27 |
25
|
fvoveq1d |
|
| 28 |
27
|
breq1d |
|
| 29 |
26 28
|
anbi12d |
|
| 30 |
29
|
cbvralvw |
|
| 31 |
|
recn |
|
| 32 |
31
|
anim1i |
|
| 33 |
32
|
ralimi |
|
| 34 |
30 33
|
sylbi |
|
| 35 |
34
|
reximi |
|
| 36 |
24 35
|
sylbi |
|
| 37 |
36
|
ralimi |
|
| 38 |
3 37
|
syl |
|
| 39 |
38
|
adantr |
|
| 40 |
1 10
|
cau4 |
|
| 41 |
40
|
ad2antrl |
|
| 42 |
39 41
|
mpbid |
|
| 43 |
|
simpr |
|
| 44 |
10
|
uztrn2 |
|
| 45 |
|
fveq2 |
|
| 46 |
|
eqid |
|
| 47 |
|
fvex |
|
| 48 |
45 46 47
|
fvmpt |
|
| 49 |
44 48
|
syl |
|
| 50 |
|
fveq2 |
|
| 51 |
|
fvex |
|
| 52 |
50 46 51
|
fvmpt |
|
| 53 |
52
|
adantr |
|
| 54 |
49 53
|
oveq12d |
|
| 55 |
54
|
fveq2d |
|
| 56 |
55
|
breq1d |
|
| 57 |
43 56
|
imbitrrid |
|
| 58 |
57
|
ralimdva |
|
| 59 |
58
|
reximia |
|
| 60 |
59
|
ralimi |
|
| 61 |
42 60
|
syl |
|
| 62 |
10 16 61
|
caurcvg |
|
| 63 |
|
eluzelz |
|
| 64 |
63 1
|
eleq2s |
|
| 65 |
64
|
ad2antrl |
|
| 66 |
2
|
adantr |
|
| 67 |
|
fveq2 |
|
| 68 |
67
|
cbvmptv |
|
| 69 |
10 68
|
climmpt |
|
| 70 |
65 66 69
|
syl2anc |
|
| 71 |
62 70
|
mpbird |
|
| 72 |
|
climrel |
|
| 73 |
72
|
releldmi |
|
| 74 |
71 73
|
syl |
|
| 75 |
74
|
expr |
|
| 76 |
9 75
|
syl5 |
|
| 77 |
76
|
rexlimdva |
|
| 78 |
77
|
rexlimdvw |
|
| 79 |
7 78
|
mpd |
|