Metamath Proof Explorer


Theorem caurcvg2

Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005) (Revised by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses caucvg.1 Z = M
caurcvg2.2 φ F V
caurcvg2.3 φ x + j Z k j F k F k F j < x
Assertion caurcvg2 φ F dom

Proof

Step Hyp Ref Expression
1 caucvg.1 Z = M
2 caurcvg2.2 φ F V
3 caurcvg2.3 φ x + j Z k j F k F k F j < x
4 1rp 1 +
5 4 ne0ii +
6 r19.2z + x + j Z k j F k F k F j < x x + j Z k j F k F k F j < x
7 5 3 6 sylancr φ x + j Z k j F k F k F j < x
8 simpl F k F k F j < x F k
9 8 ralimi k j F k F k F j < x k j F k
10 eqid j = j
11 simprr φ j Z k j F k k j F k
12 fveq2 k = n F k = F n
13 12 eleq1d k = n F k F n
14 13 rspccva k j F k n j F n
15 11 14 sylan φ j Z k j F k n j F n
16 15 fmpttd φ j Z k j F k n j F n : j
17 fveq2 j = m j = m
18 fveq2 j = m F j = F m
19 18 oveq2d j = m F k F j = F k F m
20 19 fveq2d j = m F k F j = F k F m
21 20 breq1d j = m F k F j < x F k F m < x
22 21 anbi2d j = m F k F k F j < x F k F k F m < x
23 17 22 raleqbidv j = m k j F k F k F j < x k m F k F k F m < x
24 23 cbvrexvw j Z k j F k F k F j < x m Z k m F k F k F m < x
25 fveq2 k = i F k = F i
26 25 eleq1d k = i F k F i
27 25 fvoveq1d k = i F k F m = F i F m
28 27 breq1d k = i F k F m < x F i F m < x
29 26 28 anbi12d k = i F k F k F m < x F i F i F m < x
30 29 cbvralvw k m F k F k F m < x i m F i F i F m < x
31 recn F i F i
32 31 anim1i F i F i F m < x F i F i F m < x
33 32 ralimi i m F i F i F m < x i m F i F i F m < x
34 30 33 sylbi k m F k F k F m < x i m F i F i F m < x
35 34 reximi m Z k m F k F k F m < x m Z i m F i F i F m < x
36 24 35 sylbi j Z k j F k F k F j < x m Z i m F i F i F m < x
37 36 ralimi x + j Z k j F k F k F j < x x + m Z i m F i F i F m < x
38 3 37 syl φ x + m Z i m F i F i F m < x
39 38 adantr φ j Z k j F k x + m Z i m F i F i F m < x
40 1 10 cau4 j Z x + m Z i m F i F i F m < x x + m j i m F i F i F m < x
41 40 ad2antrl φ j Z k j F k x + m Z i m F i F i F m < x x + m j i m F i F i F m < x
42 39 41 mpbid φ j Z k j F k x + m j i m F i F i F m < x
43 simpr F i F i F m < x F i F m < x
44 10 uztrn2 m j i m i j
45 fveq2 n = i F n = F i
46 eqid n j F n = n j F n
47 fvex F i V
48 45 46 47 fvmpt i j n j F n i = F i
49 44 48 syl m j i m n j F n i = F i
50 fveq2 n = m F n = F m
51 fvex F m V
52 50 46 51 fvmpt m j n j F n m = F m
53 52 adantr m j i m n j F n m = F m
54 49 53 oveq12d m j i m n j F n i n j F n m = F i F m
55 54 fveq2d m j i m n j F n i n j F n m = F i F m
56 55 breq1d m j i m n j F n i n j F n m < x F i F m < x
57 43 56 syl5ibr m j i m F i F i F m < x n j F n i n j F n m < x
58 57 ralimdva m j i m F i F i F m < x i m n j F n i n j F n m < x
59 58 reximia m j i m F i F i F m < x m j i m n j F n i n j F n m < x
60 59 ralimi x + m j i m F i F i F m < x x + m j i m n j F n i n j F n m < x
61 42 60 syl φ j Z k j F k x + m j i m n j F n i n j F n m < x
62 10 16 61 caurcvg φ j Z k j F k n j F n lim sup n j F n
63 eluzelz j M j
64 63 1 eleq2s j Z j
65 64 ad2antrl φ j Z k j F k j
66 2 adantr φ j Z k j F k F V
67 fveq2 n = k F n = F k
68 67 cbvmptv n j F n = k j F k
69 10 68 climmpt j F V F lim sup n j F n n j F n lim sup n j F n
70 65 66 69 syl2anc φ j Z k j F k F lim sup n j F n n j F n lim sup n j F n
71 62 70 mpbird φ j Z k j F k F lim sup n j F n
72 climrel Rel
73 72 releldmi F lim sup n j F n F dom
74 71 73 syl φ j Z k j F k F dom
75 74 expr φ j Z k j F k F dom
76 9 75 syl5 φ j Z k j F k F k F j < x F dom
77 76 rexlimdva φ j Z k j F k F k F j < x F dom
78 77 rexlimdvw φ x + j Z k j F k F k F j < x F dom
79 7 78 mpd φ F dom