| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsum.s |
|
| 2 |
|
dvfsum.z |
|
| 3 |
|
dvfsum.m |
|
| 4 |
|
dvfsum.d |
|
| 5 |
|
dvfsum.md |
|
| 6 |
|
dvfsum.t |
|
| 7 |
|
dvfsum.a |
|
| 8 |
|
dvfsum.b1 |
|
| 9 |
|
dvfsum.b2 |
|
| 10 |
|
dvfsum.b3 |
|
| 11 |
|
dvfsum.c |
|
| 12 |
|
dvfsumrlim.l |
|
| 13 |
|
dvfsumrlim.g |
|
| 14 |
|
dvfsumrlim.k |
|
| 15 |
|
dvfsumrlim2.1 |
|
| 16 |
|
dvfsumrlim2.2 |
|
| 17 |
|
ioossre |
|
| 18 |
1 17
|
eqsstri |
|
| 19 |
18 15
|
sselid |
|
| 20 |
19
|
rexrd |
|
| 21 |
19
|
renepnfd |
|
| 22 |
|
icopnfsup |
|
| 23 |
20 21 22
|
syl2anc |
|
| 24 |
23
|
adantr |
|
| 25 |
1 2 3 4 5 6 7 8 9 10 11 13
|
dvfsumrlimf |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
15
|
ad2antrr |
|
| 28 |
26 27
|
ffvelcdmd |
|
| 29 |
28
|
recnd |
|
| 30 |
6
|
rexrd |
|
| 31 |
15 1
|
eleqtrdi |
|
| 32 |
|
elioopnf |
|
| 33 |
30 32
|
syl |
|
| 34 |
31 33
|
mpbid |
|
| 35 |
34
|
simprd |
|
| 36 |
|
df-ioo |
|
| 37 |
|
df-ico |
|
| 38 |
|
xrltletr |
|
| 39 |
36 37 38
|
ixxss1 |
|
| 40 |
30 35 39
|
syl2anc |
|
| 41 |
40 1
|
sseqtrrdi |
|
| 42 |
41
|
adantr |
|
| 43 |
42
|
sselda |
|
| 44 |
26 43
|
ffvelcdmd |
|
| 45 |
44
|
recnd |
|
| 46 |
29 45
|
subcld |
|
| 47 |
|
pnfxr |
|
| 48 |
|
icossre |
|
| 49 |
19 47 48
|
sylancl |
|
| 50 |
49
|
adantr |
|
| 51 |
|
rlimf |
|
| 52 |
51
|
adantl |
|
| 53 |
|
ovex |
|
| 54 |
53 13
|
dmmpti |
|
| 55 |
54
|
feq2i |
|
| 56 |
52 55
|
sylib |
|
| 57 |
15
|
adantr |
|
| 58 |
56 57
|
ffvelcdmd |
|
| 59 |
|
rlimconst |
|
| 60 |
50 58 59
|
syl2anc |
|
| 61 |
56
|
feqmptd |
|
| 62 |
|
simpr |
|
| 63 |
61 62
|
eqbrtrrd |
|
| 64 |
42 63
|
rlimres2 |
|
| 65 |
29 45 60 64
|
rlimsub |
|
| 66 |
46 65
|
rlimabs |
|
| 67 |
18
|
a1i |
|
| 68 |
67 7 8 10
|
dvmptrecl |
|
| 69 |
68
|
ralrimiva |
|
| 70 |
|
nfcsb1v |
|
| 71 |
70
|
nfel1 |
|
| 72 |
|
csbeq1a |
|
| 73 |
72
|
eleq1d |
|
| 74 |
71 73
|
rspc |
|
| 75 |
15 69 74
|
sylc |
|
| 76 |
75
|
recnd |
|
| 77 |
|
rlimconst |
|
| 78 |
49 76 77
|
syl2anc |
|
| 79 |
78
|
adantr |
|
| 80 |
46
|
abscld |
|
| 81 |
75
|
ad2antrr |
|
| 82 |
29 45
|
abssubd |
|
| 83 |
3
|
adantr |
|
| 84 |
4
|
adantr |
|
| 85 |
5
|
adantr |
|
| 86 |
6
|
adantr |
|
| 87 |
7
|
adantlr |
|
| 88 |
8
|
adantlr |
|
| 89 |
9
|
adantlr |
|
| 90 |
10
|
adantr |
|
| 91 |
47
|
a1i |
|
| 92 |
|
3simpa |
|
| 93 |
92 12
|
syl3an3 |
|
| 94 |
93
|
3adant1r |
|
| 95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dvfsumrlimge0 |
|
| 96 |
95
|
3adantr3 |
|
| 97 |
96
|
adantlr |
|
| 98 |
15
|
adantr |
|
| 99 |
41
|
sselda |
|
| 100 |
16
|
adantr |
|
| 101 |
|
elicopnf |
|
| 102 |
19 101
|
syl |
|
| 103 |
102
|
simplbda |
|
| 104 |
102
|
simprbda |
|
| 105 |
104
|
rexrd |
|
| 106 |
|
pnfge |
|
| 107 |
105 106
|
syl |
|
| 108 |
1 2 83 84 85 86 87 88 89 90 11 91 94 13 97 98 99 100 103 107
|
dvfsumlem4 |
|
| 109 |
108
|
adantlr |
|
| 110 |
82 109
|
eqbrtrd |
|
| 111 |
24 66 79 80 81 110
|
rlimle |
|