Metamath Proof Explorer


Theorem dvfsumrlim2

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if x e. S |-> B is a decreasing function with antiderivative A converging to zero, then the difference between sum_ k e. ( M ... ( |_x ) ) B ( k ) and S. u e. ( M , x ) B ( u ) _d u = A ( x ) converges to a constant limit value, with the remainder term bounded by B ( x ) . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S=T+∞
dvfsum.z Z=M
dvfsum.m φM
dvfsum.d φD
dvfsum.md φMD+1
dvfsum.t φT
dvfsum.a φxSA
dvfsum.b1 φxSBV
dvfsum.b2 φxZB
dvfsum.b3 φdxSAdx=xSB
dvfsum.c x=kB=C
dvfsumrlim.l φxSkSDxxkCB
dvfsumrlim.g G=xSk=MxCA
dvfsumrlim.k φxSB0
dvfsumrlim2.1 φXS
dvfsumrlim2.2 φDX
Assertion dvfsumrlim2 φGLGXLX/xB

Proof

Step Hyp Ref Expression
1 dvfsum.s S=T+∞
2 dvfsum.z Z=M
3 dvfsum.m φM
4 dvfsum.d φD
5 dvfsum.md φMD+1
6 dvfsum.t φT
7 dvfsum.a φxSA
8 dvfsum.b1 φxSBV
9 dvfsum.b2 φxZB
10 dvfsum.b3 φdxSAdx=xSB
11 dvfsum.c x=kB=C
12 dvfsumrlim.l φxSkSDxxkCB
13 dvfsumrlim.g G=xSk=MxCA
14 dvfsumrlim.k φxSB0
15 dvfsumrlim2.1 φXS
16 dvfsumrlim2.2 φDX
17 ioossre T+∞
18 1 17 eqsstri S
19 18 15 sselid φX
20 19 rexrd φX*
21 19 renepnfd φX+∞
22 icopnfsup X*X+∞supX+∞*<=+∞
23 20 21 22 syl2anc φsupX+∞*<=+∞
24 23 adantr φGLsupX+∞*<=+∞
25 1 2 3 4 5 6 7 8 9 10 11 13 dvfsumrlimf φG:S
26 25 ad2antrr φGLyX+∞G:S
27 15 ad2antrr φGLyX+∞XS
28 26 27 ffvelcdmd φGLyX+∞GX
29 28 recnd φGLyX+∞GX
30 6 rexrd φT*
31 15 1 eleqtrdi φXT+∞
32 elioopnf T*XT+∞XT<X
33 30 32 syl φXT+∞XT<X
34 31 33 mpbid φXT<X
35 34 simprd φT<X
36 df-ioo .=u*,v*w*|u<ww<v
37 df-ico .=u*,v*w*|uww<v
38 xrltletr T*X*z*T<XXzT<z
39 36 37 38 ixxss1 T*T<XX+∞T+∞
40 30 35 39 syl2anc φX+∞T+∞
41 40 1 sseqtrrdi φX+∞S
42 41 adantr φGLX+∞S
43 42 sselda φGLyX+∞yS
44 26 43 ffvelcdmd φGLyX+∞Gy
45 44 recnd φGLyX+∞Gy
46 29 45 subcld φGLyX+∞GXGy
47 pnfxr +∞*
48 icossre X+∞*X+∞
49 19 47 48 sylancl φX+∞
50 49 adantr φGLX+∞
51 rlimf GLG:domG
52 51 adantl φGLG:domG
53 ovex k=MxCAV
54 53 13 dmmpti domG=S
55 54 feq2i G:domGG:S
56 52 55 sylib φGLG:S
57 15 adantr φGLXS
58 56 57 ffvelcdmd φGLGX
59 rlimconst X+∞GXyX+∞GXGX
60 50 58 59 syl2anc φGLyX+∞GXGX
61 56 feqmptd φGLG=ySGy
62 simpr φGLGL
63 61 62 eqbrtrrd φGLySGyL
64 42 63 rlimres2 φGLyX+∞GyL
65 29 45 60 64 rlimsub φGLyX+∞GXGyGXL
66 46 65 rlimabs φGLyX+∞GXGyGXL
67 18 a1i φS
68 67 7 8 10 dvmptrecl φxSB
69 68 ralrimiva φxSB
70 nfcsb1v _xX/xB
71 70 nfel1 xX/xB
72 csbeq1a x=XB=X/xB
73 72 eleq1d x=XBX/xB
74 71 73 rspc XSxSBX/xB
75 15 69 74 sylc φX/xB
76 75 recnd φX/xB
77 rlimconst X+∞X/xByX+∞X/xBX/xB
78 49 76 77 syl2anc φyX+∞X/xBX/xB
79 78 adantr φGLyX+∞X/xBX/xB
80 46 abscld φGLyX+∞GXGy
81 75 ad2antrr φGLyX+∞X/xB
82 29 45 abssubd φGLyX+∞GXGy=GyGX
83 3 adantr φyX+∞M
84 4 adantr φyX+∞D
85 5 adantr φyX+∞MD+1
86 6 adantr φyX+∞T
87 7 adantlr φyX+∞xSA
88 8 adantlr φyX+∞xSBV
89 9 adantlr φyX+∞xZB
90 10 adantr φyX+∞dxSAdx=xSB
91 47 a1i φyX+∞+∞*
92 3simpa Dxxkk+∞Dxxk
93 92 12 syl3an3 φxSkSDxxkk+∞CB
94 93 3adant1r φyX+∞xSkSDxxkk+∞CB
95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dvfsumrlimge0 φxSDx0B
96 95 3adantr3 φxSDxx+∞0B
97 96 adantlr φyX+∞xSDxx+∞0B
98 15 adantr φyX+∞XS
99 41 sselda φyX+∞yS
100 16 adantr φyX+∞DX
101 elicopnf XyX+∞yXy
102 19 101 syl φyX+∞yXy
103 102 simplbda φyX+∞Xy
104 102 simprbda φyX+∞y
105 104 rexrd φyX+∞y*
106 pnfge y*y+∞
107 105 106 syl φyX+∞y+∞
108 1 2 83 84 85 86 87 88 89 90 11 91 94 13 97 98 99 100 103 107 dvfsumlem4 φyX+∞GyGXX/xB
109 108 adantlr φGLyX+∞GyGXX/xB
110 82 109 eqbrtrd φGLyX+∞GXGyX/xB
111 24 66 79 80 81 110 rlimle φGLGXLX/xB