Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if x e. S |-> B is a decreasing function with antiderivative A converging to zero, then the difference between sum_ k e. ( M ... ( |_x ) ) B ( k ) and S. u e. ( M , x ) B ( u ) _d u = A ( x ) converges to a constant limit value, with the remainder term bounded by B ( x ) . (Contributed by Mario Carneiro, 18-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvfsum.s | |
|
dvfsum.z | |
||
dvfsum.m | |
||
dvfsum.d | |
||
dvfsum.md | |
||
dvfsum.t | |
||
dvfsum.a | |
||
dvfsum.b1 | |
||
dvfsum.b2 | |
||
dvfsum.b3 | |
||
dvfsum.c | |
||
dvfsumrlim.l | |
||
dvfsumrlim.g | |
||
dvfsumrlim.k | |
||
dvfsumrlim2.1 | |
||
dvfsumrlim2.2 | |
||
Assertion | dvfsumrlim2 | |