Metamath Proof Explorer


Theorem dvply2

Description: The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014) (Proof shortened by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion dvply2
|- ( F e. ( Poly ` S ) -> ( CC _D F ) e. ( Poly ` CC ) )

Proof

Step Hyp Ref Expression
1 cnring
 |-  CCfld e. Ring
2 cnfldbas
 |-  CC = ( Base ` CCfld )
3 2 subrgid
 |-  ( CCfld e. Ring -> CC e. ( SubRing ` CCfld ) )
4 1 3 ax-mp
 |-  CC e. ( SubRing ` CCfld )
5 plyssc
 |-  ( Poly ` S ) C_ ( Poly ` CC )
6 5 sseli
 |-  ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) )
7 dvply2g
 |-  ( ( CC e. ( SubRing ` CCfld ) /\ F e. ( Poly ` CC ) ) -> ( CC _D F ) e. ( Poly ` CC ) )
8 4 6 7 sylancr
 |-  ( F e. ( Poly ` S ) -> ( CC _D F ) e. ( Poly ` CC ) )