| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvrcn.j |  |-  J = ( TopOpen ` R ) | 
						
							| 2 |  | dvrcn.d |  |-  ./ = ( /r ` R ) | 
						
							| 3 |  | dvrcn.u |  |-  U = ( Unit ` R ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 6 |  | eqid |  |-  ( invr ` R ) = ( invr ` R ) | 
						
							| 7 | 4 5 3 6 2 | dvrfval |  |-  ./ = ( x e. ( Base ` R ) , y e. U |-> ( x ( .r ` R ) ( ( invr ` R ) ` y ) ) ) | 
						
							| 8 |  | tdrgtrg |  |-  ( R e. TopDRing -> R e. TopRing ) | 
						
							| 9 |  | tdrgtps |  |-  ( R e. TopDRing -> R e. TopSp ) | 
						
							| 10 | 4 1 | istps |  |-  ( R e. TopSp <-> J e. ( TopOn ` ( Base ` R ) ) ) | 
						
							| 11 | 9 10 | sylib |  |-  ( R e. TopDRing -> J e. ( TopOn ` ( Base ` R ) ) ) | 
						
							| 12 | 4 3 | unitss |  |-  U C_ ( Base ` R ) | 
						
							| 13 |  | resttopon |  |-  ( ( J e. ( TopOn ` ( Base ` R ) ) /\ U C_ ( Base ` R ) ) -> ( J |`t U ) e. ( TopOn ` U ) ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( R e. TopDRing -> ( J |`t U ) e. ( TopOn ` U ) ) | 
						
							| 15 | 11 14 | cnmpt1st |  |-  ( R e. TopDRing -> ( x e. ( Base ` R ) , y e. U |-> x ) e. ( ( J tX ( J |`t U ) ) Cn J ) ) | 
						
							| 16 | 11 14 | cnmpt2nd |  |-  ( R e. TopDRing -> ( x e. ( Base ` R ) , y e. U |-> y ) e. ( ( J tX ( J |`t U ) ) Cn ( J |`t U ) ) ) | 
						
							| 17 | 1 6 3 | invrcn |  |-  ( R e. TopDRing -> ( invr ` R ) e. ( ( J |`t U ) Cn J ) ) | 
						
							| 18 | 11 14 16 17 | cnmpt21f |  |-  ( R e. TopDRing -> ( x e. ( Base ` R ) , y e. U |-> ( ( invr ` R ) ` y ) ) e. ( ( J tX ( J |`t U ) ) Cn J ) ) | 
						
							| 19 | 1 5 8 11 14 15 18 | cnmpt2mulr |  |-  ( R e. TopDRing -> ( x e. ( Base ` R ) , y e. U |-> ( x ( .r ` R ) ( ( invr ` R ) ` y ) ) ) e. ( ( J tX ( J |`t U ) ) Cn J ) ) | 
						
							| 20 | 7 19 | eqeltrid |  |-  ( R e. TopDRing -> ./ e. ( ( J tX ( J |`t U ) ) Cn J ) ) |