| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvrcn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑅 ) | 
						
							| 2 |  | dvrcn.d | ⊢  /   =  ( /r ‘ 𝑅 ) | 
						
							| 3 |  | dvrcn.u | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( invr ‘ 𝑅 )  =  ( invr ‘ 𝑅 ) | 
						
							| 7 | 4 5 3 6 2 | dvrfval | ⊢  /   =  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  𝑈  ↦  ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑦 ) ) ) | 
						
							| 8 |  | tdrgtrg | ⊢ ( 𝑅  ∈  TopDRing  →  𝑅  ∈  TopRing ) | 
						
							| 9 |  | tdrgtps | ⊢ ( 𝑅  ∈  TopDRing  →  𝑅  ∈  TopSp ) | 
						
							| 10 | 4 1 | istps | ⊢ ( 𝑅  ∈  TopSp  ↔  𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝑅  ∈  TopDRing  →  𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 12 | 4 3 | unitss | ⊢ 𝑈  ⊆  ( Base ‘ 𝑅 ) | 
						
							| 13 |  | resttopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝑅 ) )  ∧  𝑈  ⊆  ( Base ‘ 𝑅 ) )  →  ( 𝐽  ↾t  𝑈 )  ∈  ( TopOn ‘ 𝑈 ) ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( 𝑅  ∈  TopDRing  →  ( 𝐽  ↾t  𝑈 )  ∈  ( TopOn ‘ 𝑈 ) ) | 
						
							| 15 | 11 14 | cnmpt1st | ⊢ ( 𝑅  ∈  TopDRing  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  𝑈  ↦  𝑥 )  ∈  ( ( 𝐽  ×t  ( 𝐽  ↾t  𝑈 ) )  Cn  𝐽 ) ) | 
						
							| 16 | 11 14 | cnmpt2nd | ⊢ ( 𝑅  ∈  TopDRing  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  𝑈  ↦  𝑦 )  ∈  ( ( 𝐽  ×t  ( 𝐽  ↾t  𝑈 ) )  Cn  ( 𝐽  ↾t  𝑈 ) ) ) | 
						
							| 17 | 1 6 3 | invrcn | ⊢ ( 𝑅  ∈  TopDRing  →  ( invr ‘ 𝑅 )  ∈  ( ( 𝐽  ↾t  𝑈 )  Cn  𝐽 ) ) | 
						
							| 18 | 11 14 16 17 | cnmpt21f | ⊢ ( 𝑅  ∈  TopDRing  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  𝑈  ↦  ( ( invr ‘ 𝑅 ) ‘ 𝑦 ) )  ∈  ( ( 𝐽  ×t  ( 𝐽  ↾t  𝑈 ) )  Cn  𝐽 ) ) | 
						
							| 19 | 1 5 8 11 14 15 18 | cnmpt2mulr | ⊢ ( 𝑅  ∈  TopDRing  →  ( 𝑥  ∈  ( Base ‘ 𝑅 ) ,  𝑦  ∈  𝑈  ↦  ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑦 ) ) )  ∈  ( ( 𝐽  ×t  ( 𝐽  ↾t  𝑈 ) )  Cn  𝐽 ) ) | 
						
							| 20 | 7 19 | eqeltrid | ⊢ ( 𝑅  ∈  TopDRing  →   /   ∈  ( ( 𝐽  ×t  ( 𝐽  ↾t  𝑈 ) )  Cn  𝐽 ) ) |