| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) |
| 2 |
|
dvrcn.d |
⊢ / = ( /r ‘ 𝑅 ) |
| 3 |
|
dvrcn.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 7 |
4 5 3 6 2
|
dvrfval |
⊢ / = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 8 |
|
tdrgtrg |
⊢ ( 𝑅 ∈ TopDRing → 𝑅 ∈ TopRing ) |
| 9 |
|
tdrgtps |
⊢ ( 𝑅 ∈ TopDRing → 𝑅 ∈ TopSp ) |
| 10 |
4 1
|
istps |
⊢ ( 𝑅 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝑅 ∈ TopDRing → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 12 |
4 3
|
unitss |
⊢ 𝑈 ⊆ ( Base ‘ 𝑅 ) |
| 13 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝑈 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝐽 ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ) |
| 14 |
11 12 13
|
sylancl |
⊢ ( 𝑅 ∈ TopDRing → ( 𝐽 ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ) |
| 15 |
11 14
|
cnmpt1st |
⊢ ( 𝑅 ∈ TopDRing → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ 𝑈 ↦ 𝑥 ) ∈ ( ( 𝐽 ×t ( 𝐽 ↾t 𝑈 ) ) Cn 𝐽 ) ) |
| 16 |
11 14
|
cnmpt2nd |
⊢ ( 𝑅 ∈ TopDRing → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ 𝑈 ↦ 𝑦 ) ∈ ( ( 𝐽 ×t ( 𝐽 ↾t 𝑈 ) ) Cn ( 𝐽 ↾t 𝑈 ) ) ) |
| 17 |
1 6 3
|
invrcn |
⊢ ( 𝑅 ∈ TopDRing → ( invr ‘ 𝑅 ) ∈ ( ( 𝐽 ↾t 𝑈 ) Cn 𝐽 ) ) |
| 18 |
11 14 16 17
|
cnmpt21f |
⊢ ( 𝑅 ∈ TopDRing → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ 𝑈 ↦ ( ( invr ‘ 𝑅 ) ‘ 𝑦 ) ) ∈ ( ( 𝐽 ×t ( 𝐽 ↾t 𝑈 ) ) Cn 𝐽 ) ) |
| 19 |
1 5 8 11 14 15 18
|
cnmpt2mulr |
⊢ ( 𝑅 ∈ TopDRing → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑦 ) ) ) ∈ ( ( 𝐽 ×t ( 𝐽 ↾t 𝑈 ) ) Cn 𝐽 ) ) |
| 20 |
7 19
|
eqeltrid |
⊢ ( 𝑅 ∈ TopDRing → / ∈ ( ( 𝐽 ×t ( 𝐽 ↾t 𝑈 ) ) Cn 𝐽 ) ) |