Step |
Hyp |
Ref |
Expression |
1 |
|
ax-resscn |
|- RR C_ CC |
2 |
1
|
a1i |
|- ( ( A C_ RR /\ F : A --> CC ) -> RR C_ CC ) |
3 |
|
simpr |
|- ( ( A C_ RR /\ F : A --> CC ) -> F : A --> CC ) |
4 |
|
simpl |
|- ( ( A C_ RR /\ F : A --> CC ) -> A C_ RR ) |
5 |
|
ioossre |
|- ( B (,) C ) C_ RR |
6 |
5
|
a1i |
|- ( ( A C_ RR /\ F : A --> CC ) -> ( B (,) C ) C_ RR ) |
7 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
8 |
7
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
9 |
7 8
|
dvres |
|- ( ( ( RR C_ CC /\ F : A --> CC ) /\ ( A C_ RR /\ ( B (,) C ) C_ RR ) ) -> ( RR _D ( F |` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) C ) ) ) ) |
10 |
2 3 4 6 9
|
syl22anc |
|- ( ( A C_ RR /\ F : A --> CC ) -> ( RR _D ( F |` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) C ) ) ) ) |
11 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) C ) ) = ( B (,) C ) |
12 |
11
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( B (,) C ) ) |
13 |
10 12
|
eqtrdi |
|- ( ( A C_ RR /\ F : A --> CC ) -> ( RR _D ( F |` ( B (,) C ) ) ) = ( ( RR _D F ) |` ( B (,) C ) ) ) |