| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 2 | 1 | a1i |  |-  ( G e. W -> ( Edg ` G ) = ran ( iEdg ` G ) ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( G e. W -> ( ( Edg ` G ) = (/) <-> ran ( iEdg ` G ) = (/) ) ) | 
						
							| 4 |  | funrel |  |-  ( Fun ( iEdg ` G ) -> Rel ( iEdg ` G ) ) | 
						
							| 5 |  | relrn0 |  |-  ( Rel ( iEdg ` G ) -> ( ( iEdg ` G ) = (/) <-> ran ( iEdg ` G ) = (/) ) ) | 
						
							| 6 | 5 | bicomd |  |-  ( Rel ( iEdg ` G ) -> ( ran ( iEdg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( Fun ( iEdg ` G ) -> ( ran ( iEdg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( iEdg ` G ) = (/) /\ G e. W ) -> G e. W ) | 
						
							| 9 |  | simpl |  |-  ( ( ( iEdg ` G ) = (/) /\ G e. W ) -> ( iEdg ` G ) = (/) ) | 
						
							| 10 | 8 9 | usgr0e |  |-  ( ( ( iEdg ` G ) = (/) /\ G e. W ) -> G e. USGraph ) | 
						
							| 11 | 10 | ex |  |-  ( ( iEdg ` G ) = (/) -> ( G e. W -> G e. USGraph ) ) | 
						
							| 12 | 7 11 | biimtrdi |  |-  ( Fun ( iEdg ` G ) -> ( ran ( iEdg ` G ) = (/) -> ( G e. W -> G e. USGraph ) ) ) | 
						
							| 13 | 12 | com13 |  |-  ( G e. W -> ( ran ( iEdg ` G ) = (/) -> ( Fun ( iEdg ` G ) -> G e. USGraph ) ) ) | 
						
							| 14 | 3 13 | sylbid |  |-  ( G e. W -> ( ( Edg ` G ) = (/) -> ( Fun ( iEdg ` G ) -> G e. USGraph ) ) ) | 
						
							| 15 | 14 | 3imp |  |-  ( ( G e. W /\ ( Edg ` G ) = (/) /\ Fun ( iEdg ` G ) ) -> G e. USGraph ) |