| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfuhgr1v0e.v |
|- V = ( Vtx ` G ) |
| 2 |
|
lfuhgr1v0e.i |
|- I = ( iEdg ` G ) |
| 3 |
|
lfuhgr1v0e.e |
|- E = { x e. ~P V | 2 <_ ( # ` x ) } |
| 4 |
2
|
a1i |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> I = ( iEdg ` G ) ) |
| 5 |
2
|
dmeqi |
|- dom I = dom ( iEdg ` G ) |
| 6 |
5
|
a1i |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> dom I = dom ( iEdg ` G ) ) |
| 7 |
1
|
fvexi |
|- V e. _V |
| 8 |
|
hash1snb |
|- ( V e. _V -> ( ( # ` V ) = 1 <-> E. v V = { v } ) ) |
| 9 |
7 8
|
ax-mp |
|- ( ( # ` V ) = 1 <-> E. v V = { v } ) |
| 10 |
|
pweq |
|- ( V = { v } -> ~P V = ~P { v } ) |
| 11 |
10
|
rabeqdv |
|- ( V = { v } -> { x e. ~P V | 2 <_ ( # ` x ) } = { x e. ~P { v } | 2 <_ ( # ` x ) } ) |
| 12 |
|
2pos |
|- 0 < 2 |
| 13 |
|
0re |
|- 0 e. RR |
| 14 |
|
2re |
|- 2 e. RR |
| 15 |
13 14
|
ltnlei |
|- ( 0 < 2 <-> -. 2 <_ 0 ) |
| 16 |
12 15
|
mpbi |
|- -. 2 <_ 0 |
| 17 |
|
1lt2 |
|- 1 < 2 |
| 18 |
|
1re |
|- 1 e. RR |
| 19 |
18 14
|
ltnlei |
|- ( 1 < 2 <-> -. 2 <_ 1 ) |
| 20 |
17 19
|
mpbi |
|- -. 2 <_ 1 |
| 21 |
|
0ex |
|- (/) e. _V |
| 22 |
|
vsnex |
|- { v } e. _V |
| 23 |
|
fveq2 |
|- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
| 24 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 25 |
23 24
|
eqtrdi |
|- ( x = (/) -> ( # ` x ) = 0 ) |
| 26 |
25
|
breq2d |
|- ( x = (/) -> ( 2 <_ ( # ` x ) <-> 2 <_ 0 ) ) |
| 27 |
26
|
notbid |
|- ( x = (/) -> ( -. 2 <_ ( # ` x ) <-> -. 2 <_ 0 ) ) |
| 28 |
|
fveq2 |
|- ( x = { v } -> ( # ` x ) = ( # ` { v } ) ) |
| 29 |
|
hashsng |
|- ( v e. _V -> ( # ` { v } ) = 1 ) |
| 30 |
29
|
elv |
|- ( # ` { v } ) = 1 |
| 31 |
28 30
|
eqtrdi |
|- ( x = { v } -> ( # ` x ) = 1 ) |
| 32 |
31
|
breq2d |
|- ( x = { v } -> ( 2 <_ ( # ` x ) <-> 2 <_ 1 ) ) |
| 33 |
32
|
notbid |
|- ( x = { v } -> ( -. 2 <_ ( # ` x ) <-> -. 2 <_ 1 ) ) |
| 34 |
21 22 27 33
|
ralpr |
|- ( A. x e. { (/) , { v } } -. 2 <_ ( # ` x ) <-> ( -. 2 <_ 0 /\ -. 2 <_ 1 ) ) |
| 35 |
16 20 34
|
mpbir2an |
|- A. x e. { (/) , { v } } -. 2 <_ ( # ` x ) |
| 36 |
|
pwsn |
|- ~P { v } = { (/) , { v } } |
| 37 |
36
|
raleqi |
|- ( A. x e. ~P { v } -. 2 <_ ( # ` x ) <-> A. x e. { (/) , { v } } -. 2 <_ ( # ` x ) ) |
| 38 |
35 37
|
mpbir |
|- A. x e. ~P { v } -. 2 <_ ( # ` x ) |
| 39 |
|
rabeq0 |
|- ( { x e. ~P { v } | 2 <_ ( # ` x ) } = (/) <-> A. x e. ~P { v } -. 2 <_ ( # ` x ) ) |
| 40 |
38 39
|
mpbir |
|- { x e. ~P { v } | 2 <_ ( # ` x ) } = (/) |
| 41 |
11 40
|
eqtrdi |
|- ( V = { v } -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) |
| 42 |
41
|
a1d |
|- ( V = { v } -> ( G e. UHGraph -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) ) |
| 43 |
42
|
exlimiv |
|- ( E. v V = { v } -> ( G e. UHGraph -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) ) |
| 44 |
9 43
|
sylbi |
|- ( ( # ` V ) = 1 -> ( G e. UHGraph -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) ) |
| 45 |
44
|
impcom |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) |
| 46 |
3 45
|
eqtrid |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> E = (/) ) |
| 47 |
4 6 46
|
feq123d |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> ( I : dom I --> E <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) ) ) |
| 48 |
47
|
biimp3a |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) ) |
| 49 |
|
f00 |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) <-> ( ( iEdg ` G ) = (/) /\ dom ( iEdg ` G ) = (/) ) ) |
| 50 |
49
|
simplbi |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) -> ( iEdg ` G ) = (/) ) |
| 51 |
48 50
|
syl |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( iEdg ` G ) = (/) ) |
| 52 |
|
uhgriedg0edg0 |
|- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 53 |
52
|
3ad2ant1 |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 54 |
51 53
|
mpbird |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( Edg ` G ) = (/) ) |