Metamath Proof Explorer


Theorem lfuhgr1v0e

Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypotheses lfuhgr1v0e.v V=VtxG
lfuhgr1v0e.i I=iEdgG
lfuhgr1v0e.e E=x𝒫V|2x
Assertion lfuhgr1v0e GUHGraphV=1I:domIEEdgG=

Proof

Step Hyp Ref Expression
1 lfuhgr1v0e.v V=VtxG
2 lfuhgr1v0e.i I=iEdgG
3 lfuhgr1v0e.e E=x𝒫V|2x
4 2 a1i GUHGraphV=1I=iEdgG
5 2 dmeqi domI=domiEdgG
6 5 a1i GUHGraphV=1domI=domiEdgG
7 1 fvexi VV
8 hash1snb VVV=1vV=v
9 7 8 ax-mp V=1vV=v
10 pweq V=v𝒫V=𝒫v
11 10 rabeqdv V=vx𝒫V|2x=x𝒫v|2x
12 2pos 0<2
13 0re 0
14 2re 2
15 13 14 ltnlei 0<2¬20
16 12 15 mpbi ¬20
17 1lt2 1<2
18 1re 1
19 18 14 ltnlei 1<2¬21
20 17 19 mpbi ¬21
21 0ex V
22 vsnex vV
23 fveq2 x=x=
24 hash0 =0
25 23 24 eqtrdi x=x=0
26 25 breq2d x=2x20
27 26 notbid x=¬2x¬20
28 fveq2 x=vx=v
29 hashsng vVv=1
30 29 elv v=1
31 28 30 eqtrdi x=vx=1
32 31 breq2d x=v2x21
33 32 notbid x=v¬2x¬21
34 21 22 27 33 ralpr xv¬2x¬20¬21
35 16 20 34 mpbir2an xv¬2x
36 pwsn 𝒫v=v
37 36 raleqi x𝒫v¬2xxv¬2x
38 35 37 mpbir x𝒫v¬2x
39 rabeq0 x𝒫v|2x=x𝒫v¬2x
40 38 39 mpbir x𝒫v|2x=
41 11 40 eqtrdi V=vx𝒫V|2x=
42 41 a1d V=vGUHGraphx𝒫V|2x=
43 42 exlimiv vV=vGUHGraphx𝒫V|2x=
44 9 43 sylbi V=1GUHGraphx𝒫V|2x=
45 44 impcom GUHGraphV=1x𝒫V|2x=
46 3 45 eqtrid GUHGraphV=1E=
47 4 6 46 feq123d GUHGraphV=1I:domIEiEdgG:domiEdgG
48 47 biimp3a GUHGraphV=1I:domIEiEdgG:domiEdgG
49 f00 iEdgG:domiEdgGiEdgG=domiEdgG=
50 49 simplbi iEdgG:domiEdgGiEdgG=
51 48 50 syl GUHGraphV=1I:domIEiEdgG=
52 uhgriedg0edg0 GUHGraphEdgG=iEdgG=
53 52 3ad2ant1 GUHGraphV=1I:domIEEdgG=iEdgG=
54 51 53 mpbird GUHGraphV=1I:domIEEdgG=