| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 2 | 1 | a1i | ⊢ ( 𝐺  ∈  𝑊  →  ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( 𝐺  ∈  𝑊  →  ( ( Edg ‘ 𝐺 )  =  ∅  ↔  ran  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 4 |  | funrel | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  →  Rel  ( iEdg ‘ 𝐺 ) ) | 
						
							| 5 |  | relrn0 | ⊢ ( Rel  ( iEdg ‘ 𝐺 )  →  ( ( iEdg ‘ 𝐺 )  =  ∅  ↔  ran  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 6 | 5 | bicomd | ⊢ ( Rel  ( iEdg ‘ 𝐺 )  →  ( ran  ( iEdg ‘ 𝐺 )  =  ∅  ↔  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  →  ( ran  ( iEdg ‘ 𝐺 )  =  ∅  ↔  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( iEdg ‘ 𝐺 )  =  ∅  ∧  𝐺  ∈  𝑊 )  →  𝐺  ∈  𝑊 ) | 
						
							| 9 |  | simpl | ⊢ ( ( ( iEdg ‘ 𝐺 )  =  ∅  ∧  𝐺  ∈  𝑊 )  →  ( iEdg ‘ 𝐺 )  =  ∅ ) | 
						
							| 10 | 8 9 | usgr0e | ⊢ ( ( ( iEdg ‘ 𝐺 )  =  ∅  ∧  𝐺  ∈  𝑊 )  →  𝐺  ∈  USGraph ) | 
						
							| 11 | 10 | ex | ⊢ ( ( iEdg ‘ 𝐺 )  =  ∅  →  ( 𝐺  ∈  𝑊  →  𝐺  ∈  USGraph ) ) | 
						
							| 12 | 7 11 | biimtrdi | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  →  ( ran  ( iEdg ‘ 𝐺 )  =  ∅  →  ( 𝐺  ∈  𝑊  →  𝐺  ∈  USGraph ) ) ) | 
						
							| 13 | 12 | com13 | ⊢ ( 𝐺  ∈  𝑊  →  ( ran  ( iEdg ‘ 𝐺 )  =  ∅  →  ( Fun  ( iEdg ‘ 𝐺 )  →  𝐺  ∈  USGraph ) ) ) | 
						
							| 14 | 3 13 | sylbid | ⊢ ( 𝐺  ∈  𝑊  →  ( ( Edg ‘ 𝐺 )  =  ∅  →  ( Fun  ( iEdg ‘ 𝐺 )  →  𝐺  ∈  USGraph ) ) ) | 
						
							| 15 | 14 | 3imp | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Edg ‘ 𝐺 )  =  ∅  ∧  Fun  ( iEdg ‘ 𝐺 ) )  →  𝐺  ∈  USGraph ) |