Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
eqid |
|- { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
8 |
1 2 3 4 5 6 7
|
efgcpbllemb |
|- ( ( A e. W /\ B e. W ) -> .~ C_ { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } ) |
9 |
8
|
ssbrd |
|- ( ( A e. W /\ B e. W ) -> ( X .~ Y -> X { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } Y ) ) |
10 |
9
|
3impia |
|- ( ( A e. W /\ B e. W /\ X .~ Y ) -> X { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } Y ) |
11 |
1 2 3 4 5 6 7
|
efgcpbllema |
|- ( X { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } Y <-> ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |
12 |
11
|
simp3bi |
|- ( X { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } Y -> ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) |
13 |
10 12
|
syl |
|- ( ( A e. W /\ B e. W /\ X .~ Y ) -> ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) |