| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | eqid |  |-  { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } | 
						
							| 8 | 1 2 3 4 5 6 7 | efgcpbllemb |  |-  ( ( A e. W /\ B e. W ) -> .~ C_ { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } ) | 
						
							| 9 | 8 | ssbrd |  |-  ( ( A e. W /\ B e. W ) -> ( X .~ Y -> X { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } Y ) ) | 
						
							| 10 | 9 | 3impia |  |-  ( ( A e. W /\ B e. W /\ X .~ Y ) -> X { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } Y ) | 
						
							| 11 | 1 2 3 4 5 6 7 | efgcpbllema |  |-  ( X { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } Y <-> ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) | 
						
							| 12 | 11 | simp3bi |  |-  ( X { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } Y -> ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( A e. W /\ B e. W /\ X .~ Y ) -> ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) |