| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | efgcpbllem.1 |  |-  L = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } | 
						
							| 8 |  | oveq2 |  |-  ( i = X -> ( A ++ i ) = ( A ++ X ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( i = X -> ( ( A ++ i ) ++ B ) = ( ( A ++ X ) ++ B ) ) | 
						
							| 10 |  | oveq2 |  |-  ( j = Y -> ( A ++ j ) = ( A ++ Y ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( j = Y -> ( ( A ++ j ) ++ B ) = ( ( A ++ Y ) ++ B ) ) | 
						
							| 12 | 9 11 | breqan12d |  |-  ( ( i = X /\ j = Y ) -> ( ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) <-> ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) | 
						
							| 13 |  | vex |  |-  i e. _V | 
						
							| 14 |  | vex |  |-  j e. _V | 
						
							| 15 | 13 14 | prss |  |-  ( ( i e. W /\ j e. W ) <-> { i , j } C_ W ) | 
						
							| 16 | 15 | anbi1i |  |-  ( ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) <-> ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) ) | 
						
							| 17 | 16 | opabbii |  |-  { <. i , j >. | ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } | 
						
							| 18 | 7 17 | eqtr4i |  |-  L = { <. i , j >. | ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } | 
						
							| 19 | 12 18 | brab2a |  |-  ( X L Y <-> ( ( X e. W /\ Y e. W ) /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) | 
						
							| 20 |  | df-3an |  |-  ( ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) <-> ( ( X e. W /\ Y e. W ) /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) | 
						
							| 21 | 19 20 | bitr4i |  |-  ( X L Y <-> ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |