| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 |  | efgcpbllem.1 | ⊢ 𝐿  =  { 〈 𝑖 ,  𝑗 〉  ∣  ( { 𝑖 ,  𝑗 }  ⊆  𝑊  ∧  ( ( 𝐴  ++  𝑖 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑗 )  ++  𝐵 ) ) } | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑖  =  𝑋  →  ( 𝐴  ++  𝑖 )  =  ( 𝐴  ++  𝑋 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑖  =  𝑋  →  ( ( 𝐴  ++  𝑖 )  ++  𝐵 )  =  ( ( 𝐴  ++  𝑋 )  ++  𝐵 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑗  =  𝑌  →  ( 𝐴  ++  𝑗 )  =  ( 𝐴  ++  𝑌 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑗  =  𝑌  →  ( ( 𝐴  ++  𝑗 )  ++  𝐵 )  =  ( ( 𝐴  ++  𝑌 )  ++  𝐵 ) ) | 
						
							| 12 | 9 11 | breqan12d | ⊢ ( ( 𝑖  =  𝑋  ∧  𝑗  =  𝑌 )  →  ( ( ( 𝐴  ++  𝑖 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑗 )  ++  𝐵 )  ↔  ( ( 𝐴  ++  𝑋 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑌 )  ++  𝐵 ) ) ) | 
						
							| 13 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 14 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 15 | 13 14 | prss | ⊢ ( ( 𝑖  ∈  𝑊  ∧  𝑗  ∈  𝑊 )  ↔  { 𝑖 ,  𝑗 }  ⊆  𝑊 ) | 
						
							| 16 | 15 | anbi1i | ⊢ ( ( ( 𝑖  ∈  𝑊  ∧  𝑗  ∈  𝑊 )  ∧  ( ( 𝐴  ++  𝑖 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑗 )  ++  𝐵 ) )  ↔  ( { 𝑖 ,  𝑗 }  ⊆  𝑊  ∧  ( ( 𝐴  ++  𝑖 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑗 )  ++  𝐵 ) ) ) | 
						
							| 17 | 16 | opabbii | ⊢ { 〈 𝑖 ,  𝑗 〉  ∣  ( ( 𝑖  ∈  𝑊  ∧  𝑗  ∈  𝑊 )  ∧  ( ( 𝐴  ++  𝑖 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑗 )  ++  𝐵 ) ) }  =  { 〈 𝑖 ,  𝑗 〉  ∣  ( { 𝑖 ,  𝑗 }  ⊆  𝑊  ∧  ( ( 𝐴  ++  𝑖 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑗 )  ++  𝐵 ) ) } | 
						
							| 18 | 7 17 | eqtr4i | ⊢ 𝐿  =  { 〈 𝑖 ,  𝑗 〉  ∣  ( ( 𝑖  ∈  𝑊  ∧  𝑗  ∈  𝑊 )  ∧  ( ( 𝐴  ++  𝑖 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑗 )  ++  𝐵 ) ) } | 
						
							| 19 | 12 18 | brab2a | ⊢ ( 𝑋 𝐿 𝑌  ↔  ( ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 )  ∧  ( ( 𝐴  ++  𝑋 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑌 )  ++  𝐵 ) ) ) | 
						
							| 20 |  | df-3an | ⊢ ( ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊  ∧  ( ( 𝐴  ++  𝑋 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑌 )  ++  𝐵 ) )  ↔  ( ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 )  ∧  ( ( 𝐴  ++  𝑋 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑌 )  ++  𝐵 ) ) ) | 
						
							| 21 | 19 20 | bitr4i | ⊢ ( 𝑋 𝐿 𝑌  ↔  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊  ∧  ( ( 𝐴  ++  𝑋 )  ++  𝐵 )  ∼  ( ( 𝐴  ++  𝑌 )  ++  𝐵 ) ) ) |