| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 |  | eqid | ⊢ { 〈 𝑖 ,  𝑗 〉  ∣  ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 ) }  =  { 〈 𝑖 ,  𝑗 〉  ∣  ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 ) } | 
						
							| 8 | 1 2 3 4 5 6 7 | efgrelexlemb | ⊢  ∼   ⊆  { 〈 𝑖 ,  𝑗 〉  ∣  ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 ) } | 
						
							| 9 | 8 | ssbri | ⊢ ( 𝐴  ∼  𝐵  →  𝐴 { 〈 𝑖 ,  𝑗 〉  ∣  ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 ) } 𝐵 ) | 
						
							| 10 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝐴 { 〈 𝑖 ,  𝑗 〉  ∣  ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 ) } 𝐵  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝐴  ∼  𝐵  →  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) |