| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 |  | efgrelexlem.1 | ⊢ 𝐿  =  { 〈 𝑖 ,  𝑗 〉  ∣  ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 ) } | 
						
							| 8 | 7 | bropaex12 | ⊢ ( 𝐴 𝐿 𝐵  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 9 |  | n0i | ⊢ ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } )  →  ¬  ( ◡ 𝑆  “  { 𝐴 } )  =  ∅ ) | 
						
							| 10 |  | snprc | ⊢ ( ¬  𝐴  ∈  V  ↔  { 𝐴 }  =  ∅ ) | 
						
							| 11 |  | imaeq2 | ⊢ ( { 𝐴 }  =  ∅  →  ( ◡ 𝑆  “  { 𝐴 } )  =  ( ◡ 𝑆  “  ∅ ) ) | 
						
							| 12 | 10 11 | sylbi | ⊢ ( ¬  𝐴  ∈  V  →  ( ◡ 𝑆  “  { 𝐴 } )  =  ( ◡ 𝑆  “  ∅ ) ) | 
						
							| 13 |  | ima0 | ⊢ ( ◡ 𝑆  “  ∅ )  =  ∅ | 
						
							| 14 | 12 13 | eqtrdi | ⊢ ( ¬  𝐴  ∈  V  →  ( ◡ 𝑆  “  { 𝐴 } )  =  ∅ ) | 
						
							| 15 | 9 14 | nsyl2 | ⊢ ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } )  →  𝐴  ∈  V ) | 
						
							| 16 |  | n0i | ⊢ ( 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } )  →  ¬  ( ◡ 𝑆  “  { 𝐵 } )  =  ∅ ) | 
						
							| 17 |  | snprc | ⊢ ( ¬  𝐵  ∈  V  ↔  { 𝐵 }  =  ∅ ) | 
						
							| 18 |  | imaeq2 | ⊢ ( { 𝐵 }  =  ∅  →  ( ◡ 𝑆  “  { 𝐵 } )  =  ( ◡ 𝑆  “  ∅ ) ) | 
						
							| 19 | 17 18 | sylbi | ⊢ ( ¬  𝐵  ∈  V  →  ( ◡ 𝑆  “  { 𝐵 } )  =  ( ◡ 𝑆  “  ∅ ) ) | 
						
							| 20 | 19 13 | eqtrdi | ⊢ ( ¬  𝐵  ∈  V  →  ( ◡ 𝑆  “  { 𝐵 } )  =  ∅ ) | 
						
							| 21 | 16 20 | nsyl2 | ⊢ ( 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } )  →  𝐵  ∈  V ) | 
						
							| 22 | 15 21 | anim12i | ⊢ ( ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 23 | 22 | a1d | ⊢ ( ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) )  →  ( ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 24 | 23 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 25 |  | fveq1 | ⊢ ( 𝑐  =  𝑎  →  ( 𝑐 ‘ 0 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝑐  =  𝑎  →  ( ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 )  ↔  ( 𝑎 ‘ 0 )  =  ( 𝑑 ‘ 0 ) ) ) | 
						
							| 27 |  | fveq1 | ⊢ ( 𝑑  =  𝑏  →  ( 𝑑 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 28 | 27 | eqeq2d | ⊢ ( 𝑑  =  𝑏  →  ( ( 𝑎 ‘ 0 )  =  ( 𝑑 ‘ 0 )  ↔  ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) | 
						
							| 29 | 26 28 | cbvrex2vw | ⊢ ( ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 )  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 30 |  | sneq | ⊢ ( 𝑖  =  𝐴  →  { 𝑖 }  =  { 𝐴 } ) | 
						
							| 31 | 30 | imaeq2d | ⊢ ( 𝑖  =  𝐴  →  ( ◡ 𝑆  “  { 𝑖 } )  =  ( ◡ 𝑆  “  { 𝐴 } ) ) | 
						
							| 32 | 31 | rexeqdv | ⊢ ( 𝑖  =  𝐴  →  ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) | 
						
							| 33 | 29 32 | bitrid | ⊢ ( 𝑖  =  𝐴  →  ( ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 )  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) | 
						
							| 34 |  | sneq | ⊢ ( 𝑗  =  𝐵  →  { 𝑗 }  =  { 𝐵 } ) | 
						
							| 35 | 34 | imaeq2d | ⊢ ( 𝑗  =  𝐵  →  ( ◡ 𝑆  “  { 𝑗 } )  =  ( ◡ 𝑆  “  { 𝐵 } ) ) | 
						
							| 36 | 35 | rexeqdv | ⊢ ( 𝑗  =  𝐵  →  ( ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ↔  ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) | 
						
							| 37 | 36 | rexbidv | ⊢ ( 𝑗  =  𝐵  →  ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) | 
						
							| 38 | 33 37 7 | brabg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴 𝐿 𝐵  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) | 
						
							| 39 | 8 24 38 | pm5.21nii | ⊢ ( 𝐴 𝐿 𝐵  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝐴 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝐵 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) |