Metamath Proof Explorer


Theorem efgrelexlema

Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgrelexlem.1 L=ij|cS-1idS-1jc0=d0
Assertion efgrelexlema ALBaS-1AbS-1Ba0=b0

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgrelexlem.1 L=ij|cS-1idS-1jc0=d0
8 7 bropaex12 ALBAVBV
9 n0i aS-1A¬S-1A=
10 snprc ¬AVA=
11 imaeq2 A=S-1A=S-1
12 10 11 sylbi ¬AVS-1A=S-1
13 ima0 S-1=
14 12 13 eqtrdi ¬AVS-1A=
15 9 14 nsyl2 aS-1AAV
16 n0i bS-1B¬S-1B=
17 snprc ¬BVB=
18 imaeq2 B=S-1B=S-1
19 17 18 sylbi ¬BVS-1B=S-1
20 19 13 eqtrdi ¬BVS-1B=
21 16 20 nsyl2 bS-1BBV
22 15 21 anim12i aS-1AbS-1BAVBV
23 22 a1d aS-1AbS-1Ba0=b0AVBV
24 23 rexlimivv aS-1AbS-1Ba0=b0AVBV
25 fveq1 c=ac0=a0
26 25 eqeq1d c=ac0=d0a0=d0
27 fveq1 d=bd0=b0
28 27 eqeq2d d=ba0=d0a0=b0
29 26 28 cbvrex2vw cS-1idS-1jc0=d0aS-1ibS-1ja0=b0
30 sneq i=Ai=A
31 30 imaeq2d i=AS-1i=S-1A
32 31 rexeqdv i=AaS-1ibS-1ja0=b0aS-1AbS-1ja0=b0
33 29 32 bitrid i=AcS-1idS-1jc0=d0aS-1AbS-1ja0=b0
34 sneq j=Bj=B
35 34 imaeq2d j=BS-1j=S-1B
36 35 rexeqdv j=BbS-1ja0=b0bS-1Ba0=b0
37 36 rexbidv j=BaS-1AbS-1ja0=b0aS-1AbS-1Ba0=b0
38 33 37 7 brabg AVBVALBaS-1AbS-1Ba0=b0
39 8 24 38 pm5.21nii ALBaS-1AbS-1Ba0=b0