Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efgval.w | |
|
efgval.r | |
||
efgval2.m | |
||
efgval2.t | |
||
efgred.d | |
||
efgred.s | |
||
efgrelexlem.1 | |
||
Assertion | efgrelexlema | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | |
|
2 | efgval.r | |
|
3 | efgval2.m | |
|
4 | efgval2.t | |
|
5 | efgred.d | |
|
6 | efgred.s | |
|
7 | efgrelexlem.1 | |
|
8 | 7 | bropaex12 | |
9 | n0i | |
|
10 | snprc | |
|
11 | imaeq2 | |
|
12 | 10 11 | sylbi | |
13 | ima0 | |
|
14 | 12 13 | eqtrdi | |
15 | 9 14 | nsyl2 | |
16 | n0i | |
|
17 | snprc | |
|
18 | imaeq2 | |
|
19 | 17 18 | sylbi | |
20 | 19 13 | eqtrdi | |
21 | 16 20 | nsyl2 | |
22 | 15 21 | anim12i | |
23 | 22 | a1d | |
24 | 23 | rexlimivv | |
25 | fveq1 | |
|
26 | 25 | eqeq1d | |
27 | fveq1 | |
|
28 | 27 | eqeq2d | |
29 | 26 28 | cbvrex2vw | |
30 | sneq | |
|
31 | 30 | imaeq2d | |
32 | 31 | rexeqdv | |
33 | 29 32 | bitrid | |
34 | sneq | |
|
35 | 34 | imaeq2d | |
36 | 35 | rexeqdv | |
37 | 36 | rexbidv | |
38 | 33 37 7 | brabg | |
39 | 8 24 38 | pm5.21nii | |