| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 | 1 2 3 4 5 6 | efgsfo | ⊢ 𝑆 : dom  𝑆 –onto→ 𝑊 | 
						
							| 8 |  | foelrn | ⊢ ( ( 𝑆 : dom  𝑆 –onto→ 𝑊  ∧  𝐴  ∈  𝑊 )  →  ∃ 𝑎  ∈  dom  𝑆 𝐴  =  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 9 | 7 8 | mpan | ⊢ ( 𝐴  ∈  𝑊  →  ∃ 𝑎  ∈  dom  𝑆 𝐴  =  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 10 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝑎  ∈  dom  𝑆  ↔  ( 𝑎  ∈  ( Word  𝑊  ∖  { ∅ } )  ∧  ( 𝑎 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑖  ∈  ( 1 ..^ ( ♯ ‘ 𝑎 ) ) ( 𝑎 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝑎 ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 11 | 10 | simp2bi | ⊢ ( 𝑎  ∈  dom  𝑆  →  ( 𝑎 ‘ 0 )  ∈  𝐷 ) | 
						
							| 12 | 1 2 3 4 5 6 | efgsrel | ⊢ ( 𝑎  ∈  dom  𝑆  →  ( 𝑎 ‘ 0 )  ∼  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝑎  ∈  dom  𝑆 )  →  ( 𝑎 ‘ 0 )  ∼  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 14 |  | breq1 | ⊢ ( 𝑑  =  ( 𝑎 ‘ 0 )  →  ( 𝑑  ∼  ( 𝑆 ‘ 𝑎 )  ↔  ( 𝑎 ‘ 0 )  ∼  ( 𝑆 ‘ 𝑎 ) ) ) | 
						
							| 15 | 14 | rspcev | ⊢ ( ( ( 𝑎 ‘ 0 )  ∈  𝐷  ∧  ( 𝑎 ‘ 0 )  ∼  ( 𝑆 ‘ 𝑎 ) )  →  ∃ 𝑑  ∈  𝐷 𝑑  ∼  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 16 | 11 13 15 | syl2an2 | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝑎  ∈  dom  𝑆 )  →  ∃ 𝑑  ∈  𝐷 𝑑  ∼  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 17 |  | breq2 | ⊢ ( 𝐴  =  ( 𝑆 ‘ 𝑎 )  →  ( 𝑑  ∼  𝐴  ↔  𝑑  ∼  ( 𝑆 ‘ 𝑎 ) ) ) | 
						
							| 18 | 17 | rexbidv | ⊢ ( 𝐴  =  ( 𝑆 ‘ 𝑎 )  →  ( ∃ 𝑑  ∈  𝐷 𝑑  ∼  𝐴  ↔  ∃ 𝑑  ∈  𝐷 𝑑  ∼  ( 𝑆 ‘ 𝑎 ) ) ) | 
						
							| 19 | 16 18 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝑎  ∈  dom  𝑆 )  →  ( 𝐴  =  ( 𝑆 ‘ 𝑎 )  →  ∃ 𝑑  ∈  𝐷 𝑑  ∼  𝐴 ) ) | 
						
							| 20 | 19 | rexlimdva | ⊢ ( 𝐴  ∈  𝑊  →  ( ∃ 𝑎  ∈  dom  𝑆 𝐴  =  ( 𝑆 ‘ 𝑎 )  →  ∃ 𝑑  ∈  𝐷 𝑑  ∼  𝐴 ) ) | 
						
							| 21 | 9 20 | mpd | ⊢ ( 𝐴  ∈  𝑊  →  ∃ 𝑑  ∈  𝐷 𝑑  ∼  𝐴 ) | 
						
							| 22 | 1 2 | efger | ⊢  ∼   Er  𝑊 | 
						
							| 23 | 22 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  →   ∼   Er  𝑊 ) | 
						
							| 24 |  | simprl | ⊢ ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  →  𝑑  ∼  𝐴 ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  →  𝑐  ∼  𝐴 ) | 
						
							| 26 | 23 24 25 | ertr4d | ⊢ ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  →  𝑑  ∼  𝑐 ) | 
						
							| 27 | 1 2 3 4 5 6 | efgrelex | ⊢ ( 𝑑  ∼  𝑐  →  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 28 |  | fofn | ⊢ ( 𝑆 : dom  𝑆 –onto→ 𝑊  →  𝑆  Fn  dom  𝑆 ) | 
						
							| 29 |  | fniniseg | ⊢ ( 𝑆  Fn  dom  𝑆  →  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ↔  ( 𝑎  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑎 )  =  𝑑 ) ) ) | 
						
							| 30 | 7 28 29 | mp2b | ⊢ ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ↔  ( 𝑎  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑎 )  =  𝑑 ) ) | 
						
							| 31 | 30 | simplbi | ⊢ ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  →  𝑎  ∈  dom  𝑆 ) | 
						
							| 32 | 31 | ad2antrl | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  𝑎  ∈  dom  𝑆 ) | 
						
							| 33 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝑎  ∈  dom  𝑆  →  ( 𝑆 ‘ 𝑎 )  =  ( 𝑎 ‘ ( ( ♯ ‘ 𝑎 )  −  1 ) ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑆 ‘ 𝑎 )  =  ( 𝑎 ‘ ( ( ♯ ‘ 𝑎 )  −  1 ) ) ) | 
						
							| 35 | 30 | simprbi | ⊢ ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  →  ( 𝑆 ‘ 𝑎 )  =  𝑑 ) | 
						
							| 36 | 35 | ad2antrl | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑆 ‘ 𝑎 )  =  𝑑 ) | 
						
							| 37 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) ) | 
						
							| 38 | 37 | simpld | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  𝑑  ∈  𝐷 ) | 
						
							| 39 | 36 38 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑆 ‘ 𝑎 )  ∈  𝐷 ) | 
						
							| 40 | 1 2 3 4 5 6 | efgs1b | ⊢ ( 𝑎  ∈  dom  𝑆  →  ( ( 𝑆 ‘ 𝑎 )  ∈  𝐷  ↔  ( ♯ ‘ 𝑎 )  =  1 ) ) | 
						
							| 41 | 32 40 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ( 𝑆 ‘ 𝑎 )  ∈  𝐷  ↔  ( ♯ ‘ 𝑎 )  =  1 ) ) | 
						
							| 42 | 39 41 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ♯ ‘ 𝑎 )  =  1 ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ( ♯ ‘ 𝑎 )  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 44 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 45 | 43 44 | eqtrdi | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ( ♯ ‘ 𝑎 )  −  1 )  =  0 ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑎 ‘ ( ( ♯ ‘ 𝑎 )  −  1 ) )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 47 | 34 36 46 | 3eqtr3rd | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑎 ‘ 0 )  =  𝑑 ) | 
						
							| 48 |  | fniniseg | ⊢ ( 𝑆  Fn  dom  𝑆  →  ( 𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } )  ↔  ( 𝑏  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑏 )  =  𝑐 ) ) ) | 
						
							| 49 | 7 28 48 | mp2b | ⊢ ( 𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } )  ↔  ( 𝑏  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑏 )  =  𝑐 ) ) | 
						
							| 50 | 49 | simplbi | ⊢ ( 𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } )  →  𝑏  ∈  dom  𝑆 ) | 
						
							| 51 | 50 | ad2antll | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  𝑏  ∈  dom  𝑆 ) | 
						
							| 52 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝑏  ∈  dom  𝑆  →  ( 𝑆 ‘ 𝑏 )  =  ( 𝑏 ‘ ( ( ♯ ‘ 𝑏 )  −  1 ) ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑆 ‘ 𝑏 )  =  ( 𝑏 ‘ ( ( ♯ ‘ 𝑏 )  −  1 ) ) ) | 
						
							| 54 | 49 | simprbi | ⊢ ( 𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } )  →  ( 𝑆 ‘ 𝑏 )  =  𝑐 ) | 
						
							| 55 | 54 | ad2antll | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑆 ‘ 𝑏 )  =  𝑐 ) | 
						
							| 56 | 37 | simprd | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  𝑐  ∈  𝐷 ) | 
						
							| 57 | 55 56 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑆 ‘ 𝑏 )  ∈  𝐷 ) | 
						
							| 58 | 1 2 3 4 5 6 | efgs1b | ⊢ ( 𝑏  ∈  dom  𝑆  →  ( ( 𝑆 ‘ 𝑏 )  ∈  𝐷  ↔  ( ♯ ‘ 𝑏 )  =  1 ) ) | 
						
							| 59 | 51 58 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ( 𝑆 ‘ 𝑏 )  ∈  𝐷  ↔  ( ♯ ‘ 𝑏 )  =  1 ) ) | 
						
							| 60 | 57 59 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ♯ ‘ 𝑏 )  =  1 ) | 
						
							| 61 | 60 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ( ♯ ‘ 𝑏 )  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 62 | 61 44 | eqtrdi | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ( ♯ ‘ 𝑏 )  −  1 )  =  0 ) | 
						
							| 63 | 62 | fveq2d | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑏 ‘ ( ( ♯ ‘ 𝑏 )  −  1 ) )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 64 | 53 55 63 | 3eqtr3rd | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( 𝑏 ‘ 0 )  =  𝑐 ) | 
						
							| 65 | 47 64 | eqeq12d | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ↔  𝑑  =  𝑐 ) ) | 
						
							| 66 | 65 | biimpd | ⊢ ( ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  ∧  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ) )  →  ( ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  𝑑  =  𝑐 ) ) | 
						
							| 67 | 66 | rexlimdvva | ⊢ ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  →  ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑑 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑐 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  𝑑  =  𝑐 ) ) | 
						
							| 68 | 27 67 | syl5 | ⊢ ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  →  ( 𝑑  ∼  𝑐  →  𝑑  =  𝑐 ) ) | 
						
							| 69 | 26 68 | mpd | ⊢ ( ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  ∧  ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 ) )  →  𝑑  =  𝑐 ) | 
						
							| 70 | 69 | ex | ⊢ ( ( 𝐴  ∈  𝑊  ∧  ( 𝑑  ∈  𝐷  ∧  𝑐  ∈  𝐷 ) )  →  ( ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 )  →  𝑑  =  𝑐 ) ) | 
						
							| 71 | 70 | ralrimivva | ⊢ ( 𝐴  ∈  𝑊  →  ∀ 𝑑  ∈  𝐷 ∀ 𝑐  ∈  𝐷 ( ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 )  →  𝑑  =  𝑐 ) ) | 
						
							| 72 |  | breq1 | ⊢ ( 𝑑  =  𝑐  →  ( 𝑑  ∼  𝐴  ↔  𝑐  ∼  𝐴 ) ) | 
						
							| 73 | 72 | reu4 | ⊢ ( ∃! 𝑑  ∈  𝐷 𝑑  ∼  𝐴  ↔  ( ∃ 𝑑  ∈  𝐷 𝑑  ∼  𝐴  ∧  ∀ 𝑑  ∈  𝐷 ∀ 𝑐  ∈  𝐷 ( ( 𝑑  ∼  𝐴  ∧  𝑐  ∼  𝐴 )  →  𝑑  =  𝑐 ) ) ) | 
						
							| 74 | 21 71 73 | sylanbrc | ⊢ ( 𝐴  ∈  𝑊  →  ∃! 𝑑  ∈  𝐷 𝑑  ∼  𝐴 ) |