Metamath Proof Explorer


Theorem efgs1b

Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
Assertion efgs1b ( 𝐴 ∈ dom 𝑆 → ( ( 𝑆𝐴 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝐴 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
4 efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
5 efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
6 efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
7 eldifn ( ( 𝑆𝐴 ) ∈ ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) ) → ¬ ( 𝑆𝐴 ) ∈ 𝑥𝑊 ran ( 𝑇𝑥 ) )
8 7 5 eleq2s ( ( 𝑆𝐴 ) ∈ 𝐷 → ¬ ( 𝑆𝐴 ) ∈ 𝑥𝑊 ran ( 𝑇𝑥 ) )
9 1 2 3 4 5 6 efgsdm ( 𝐴 ∈ dom 𝑆 ↔ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑎 ∈ ( 1 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐴𝑎 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( 𝑎 − 1 ) ) ) ) )
10 9 simp1bi ( 𝐴 ∈ dom 𝑆𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) )
11 eldifsn ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝐴 ∈ Word 𝑊𝐴 ≠ ∅ ) )
12 lennncl ( ( 𝐴 ∈ Word 𝑊𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ )
13 11 12 sylbi ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝐴 ) ∈ ℕ )
14 10 13 syl ( 𝐴 ∈ dom 𝑆 → ( ♯ ‘ 𝐴 ) ∈ ℕ )
15 elnn1uz2 ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) = 1 ∨ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) )
16 14 15 sylib ( 𝐴 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐴 ) = 1 ∨ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) )
17 16 ord ( 𝐴 ∈ dom 𝑆 → ( ¬ ( ♯ ‘ 𝐴 ) = 1 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) )
18 10 eldifad ( 𝐴 ∈ dom 𝑆𝐴 ∈ Word 𝑊 )
19 18 adantr ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → 𝐴 ∈ Word 𝑊 )
20 wrdf ( 𝐴 ∈ Word 𝑊𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑊 )
21 19 20 syl ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑊 )
22 1z 1 ∈ ℤ
23 simpr ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) )
24 df-2 2 = ( 1 + 1 )
25 24 fveq2i ( ℤ ‘ 2 ) = ( ℤ ‘ ( 1 + 1 ) )
26 23 25 eleqtrdi ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ ( 1 + 1 ) ) )
27 eluzp1m1 ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ ( 1 + 1 ) ) ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( ℤ ‘ 1 ) )
28 22 26 27 sylancr ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( ℤ ‘ 1 ) )
29 nnuz ℕ = ( ℤ ‘ 1 )
30 28 29 eleqtrrdi ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ )
31 lbfzo0 ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ↔ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ )
32 30 31 sylibr ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) )
33 fzoend ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) )
34 elfzofz ( ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) )
35 32 33 34 3syl ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) )
36 eluzelz ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) → ( ♯ ‘ 𝐴 ) ∈ ℤ )
37 36 adantl ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℤ )
38 fzoval ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) )
39 37 38 syl ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) )
40 35 39 eleqtrrd ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) )
41 21 40 ffvelrnd ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ∈ 𝑊 )
42 uz2m1nn ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ )
43 1 2 3 4 5 6 efgsdmi ( ( 𝐴 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) → ( 𝑆𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) )
44 42 43 sylan2 ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( 𝑆𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) )
45 fveq2 ( 𝑎 = ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) → ( 𝑇𝑎 ) = ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) )
46 45 rneqd ( 𝑎 = ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) → ran ( 𝑇𝑎 ) = ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) )
47 46 eliuni ( ( ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ∈ 𝑊 ∧ ( 𝑆𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) → ( 𝑆𝐴 ) ∈ 𝑎𝑊 ran ( 𝑇𝑎 ) )
48 41 44 47 syl2anc ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( 𝑆𝐴 ) ∈ 𝑎𝑊 ran ( 𝑇𝑎 ) )
49 fveq2 ( 𝑎 = 𝑥 → ( 𝑇𝑎 ) = ( 𝑇𝑥 ) )
50 49 rneqd ( 𝑎 = 𝑥 → ran ( 𝑇𝑎 ) = ran ( 𝑇𝑥 ) )
51 50 cbviunv 𝑎𝑊 ran ( 𝑇𝑎 ) = 𝑥𝑊 ran ( 𝑇𝑥 )
52 48 51 eleqtrdi ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) ) → ( 𝑆𝐴 ) ∈ 𝑥𝑊 ran ( 𝑇𝑥 ) )
53 52 ex ( 𝐴 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 2 ) → ( 𝑆𝐴 ) ∈ 𝑥𝑊 ran ( 𝑇𝑥 ) ) )
54 17 53 syld ( 𝐴 ∈ dom 𝑆 → ( ¬ ( ♯ ‘ 𝐴 ) = 1 → ( 𝑆𝐴 ) ∈ 𝑥𝑊 ran ( 𝑇𝑥 ) ) )
55 54 con1d ( 𝐴 ∈ dom 𝑆 → ( ¬ ( 𝑆𝐴 ) ∈ 𝑥𝑊 ran ( 𝑇𝑥 ) → ( ♯ ‘ 𝐴 ) = 1 ) )
56 8 55 syl5 ( 𝐴 ∈ dom 𝑆 → ( ( 𝑆𝐴 ) ∈ 𝐷 → ( ♯ ‘ 𝐴 ) = 1 ) )
57 9 simp2bi ( 𝐴 ∈ dom 𝑆 → ( 𝐴 ‘ 0 ) ∈ 𝐷 )
58 oveq1 ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ♯ ‘ 𝐴 ) − 1 ) = ( 1 − 1 ) )
59 1m1e0 ( 1 − 1 ) = 0
60 58 59 eqtrdi ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ♯ ‘ 𝐴 ) − 1 ) = 0 )
61 60 fveq2d ( ( ♯ ‘ 𝐴 ) = 1 → ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ‘ 0 ) )
62 61 eleq1d ( ( ♯ ‘ 𝐴 ) = 1 → ( ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ∈ 𝐷 ↔ ( 𝐴 ‘ 0 ) ∈ 𝐷 ) )
63 57 62 syl5ibrcom ( 𝐴 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐴 ) = 1 → ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ∈ 𝐷 ) )
64 1 2 3 4 5 6 efgsval ( 𝐴 ∈ dom 𝑆 → ( 𝑆𝐴 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) )
65 64 eleq1d ( 𝐴 ∈ dom 𝑆 → ( ( 𝑆𝐴 ) ∈ 𝐷 ↔ ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ∈ 𝐷 ) )
66 63 65 sylibrd ( 𝐴 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐴 ) = 1 → ( 𝑆𝐴 ) ∈ 𝐷 ) )
67 56 66 impbid ( 𝐴 ∈ dom 𝑆 → ( ( 𝑆𝐴 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝐴 ) = 1 ) )