| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
| 4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
| 5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
| 7 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐹 ∈ dom 𝑆 ↔ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 8 |
7
|
simp1bi |
⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 9 |
8
|
eldifad |
⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ∈ Word 𝑊 ) |
| 10 |
1 2 3 4 5 6
|
efgsf |
⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| 11 |
10
|
fdmi |
⊢ dom 𝑆 = { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } |
| 12 |
11
|
feq2i |
⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 13 |
10 12
|
mpbir |
⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 14 |
13
|
ffvelcdmi |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐹 ) ∈ 𝑊 ) |
| 15 |
1 2 3 4
|
efgtf |
⊢ ( ( 𝑆 ‘ 𝐹 ) ∈ 𝑊 → ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) , 𝑖 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑆 ‘ 𝐹 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑖 ( 𝑀 ‘ 𝑖 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝐹 ∈ dom 𝑆 → ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) , 𝑖 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑆 ‘ 𝐹 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑖 ( 𝑀 ‘ 𝑖 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 17 |
16
|
simprd |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 18 |
17
|
frnd |
⊢ ( 𝐹 ∈ dom 𝑆 → ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ⊆ 𝑊 ) |
| 19 |
18
|
sselda |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 𝐴 ∈ 𝑊 ) |
| 20 |
19
|
s1cld |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) |
| 21 |
|
ccatcl |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ Word 𝑊 ) |
| 22 |
9 20 21
|
syl2an2r |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ Word 𝑊 ) |
| 23 |
|
ccatws1n0 |
⊢ ( 𝐹 ∈ Word 𝑊 → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ≠ ∅ ) |
| 24 |
9 23
|
syl |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ≠ ∅ ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ≠ ∅ ) |
| 26 |
|
eldifsn |
⊢ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ Word 𝑊 ∧ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ≠ ∅ ) ) |
| 27 |
22 25 26
|
sylanbrc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 28 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 𝐹 ∈ Word 𝑊 ) |
| 29 |
|
eldifsni |
⊢ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝐹 ≠ ∅ ) |
| 30 |
8 29
|
syl |
⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ≠ ∅ ) |
| 31 |
|
len0nnbi |
⊢ ( 𝐹 ∈ Word 𝑊 → ( 𝐹 ≠ ∅ ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 32 |
9 31
|
syl |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ≠ ∅ ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 33 |
30 32
|
mpbid |
⊢ ( 𝐹 ∈ dom 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 34 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 35 |
33 34
|
sylibr |
⊢ ( 𝐹 ∈ dom 𝑆 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 37 |
|
ccatval1 |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 38 |
28 20 36 37
|
syl3anc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 39 |
7
|
simp2bi |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ‘ 0 ) ∈ 𝐷 ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 0 ) ∈ 𝐷 ) |
| 41 |
38 40
|
eqeltrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 0 ) ∈ 𝐷 ) |
| 42 |
7
|
simp3bi |
⊢ ( 𝐹 ∈ dom 𝑆 → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 44 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 45 |
44
|
sseli |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 46 |
|
ccatval1 |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 47 |
45 46
|
syl3an3 |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 48 |
|
elfzoel2 |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 49 |
|
peano2zm |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ) |
| 51 |
48
|
zred |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
| 52 |
51
|
lem1d |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ≤ ( ♯ ‘ 𝐹 ) ) |
| 53 |
|
eluz2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↔ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
| 54 |
50 48 52 53
|
syl3anbrc |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 55 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 57 |
|
elfzo1elm1fzo0 |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 58 |
56 57
|
sseldd |
⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 59 |
|
ccatval1 |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ ( 𝑖 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) = ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) |
| 60 |
58 59
|
syl3an3 |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) = ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) |
| 61 |
60
|
fveq2d |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) = ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 62 |
61
|
rneqd |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 63 |
47 62
|
eleq12d |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 64 |
63
|
3expa |
⊢ ( ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 65 |
64
|
ralbidva |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) → ( ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 66 |
9 20 65
|
syl2an2r |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 67 |
43 66
|
mpbird |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 68 |
|
lencl |
⊢ ( 𝐹 ∈ Word 𝑊 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 69 |
9 68
|
syl |
⊢ ( 𝐹 ∈ dom 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 70 |
69
|
nn0cnd |
⊢ ( 𝐹 ∈ dom 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
| 71 |
70
|
addlidd |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 0 + ( ♯ ‘ 𝐹 ) ) = ( ♯ ‘ 𝐹 ) ) |
| 72 |
71
|
fveq2d |
⊢ ( 𝐹 ∈ dom 𝑆 → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 74 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐴 ”〉 ) = 1 |
| 75 |
|
1nn |
⊢ 1 ∈ ℕ |
| 76 |
74 75
|
eqeltri |
⊢ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ∈ ℕ |
| 77 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ↔ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ∈ ℕ ) |
| 78 |
76 77
|
mpbir |
⊢ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) |
| 79 |
78
|
a1i |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ) |
| 80 |
|
ccatval3 |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐹 ) ) ) = ( 〈“ 𝐴 ”〉 ‘ 0 ) ) |
| 81 |
28 20 79 80
|
syl3anc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐹 ) ) ) = ( 〈“ 𝐴 ”〉 ‘ 0 ) ) |
| 82 |
73 81
|
eqtr3d |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) = ( 〈“ 𝐴 ”〉 ‘ 0 ) ) |
| 83 |
|
simpr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 84 |
|
s1fv |
⊢ ( 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) → ( 〈“ 𝐴 ”〉 ‘ 0 ) = 𝐴 ) |
| 85 |
84
|
adantl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 〈“ 𝐴 ”〉 ‘ 0 ) = 𝐴 ) |
| 86 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 87 |
33 86
|
syl |
⊢ ( 𝐹 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 89 |
|
ccatval1 |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 90 |
28 20 88 89
|
syl3anc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 91 |
1 2 3 4 5 6
|
efgsval |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐹 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝑆 ‘ 𝐹 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 93 |
90 92
|
eqtr4d |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝑆 ‘ 𝐹 ) ) |
| 94 |
93
|
fveq2d |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 95 |
94
|
rneqd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 96 |
83 85 95
|
3eltr4d |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 〈“ 𝐴 ”〉 ‘ 0 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 97 |
82 96
|
eqeltrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 98 |
|
fvex |
⊢ ( ♯ ‘ 𝐹 ) ∈ V |
| 99 |
|
fveq2 |
⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) = ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 100 |
|
fvoveq1 |
⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) = ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 101 |
100
|
fveq2d |
⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) = ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 102 |
101
|
rneqd |
⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) = ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 103 |
99 102
|
eleq12d |
⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ( ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 104 |
98 103
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( ♯ ‘ 𝐹 ) } ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 105 |
97 104
|
sylibr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ { ( ♯ ‘ 𝐹 ) } ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 106 |
|
ralunb |
⊢ ( ∀ 𝑖 ∈ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ∧ ∀ 𝑖 ∈ { ( ♯ ‘ 𝐹 ) } ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 107 |
67 105 106
|
sylanbrc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 108 |
|
ccatlen |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ) |
| 109 |
9 20 108
|
syl2an2r |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ) |
| 110 |
74
|
oveq2i |
⊢ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) |
| 111 |
109 110
|
eqtrdi |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
| 112 |
111
|
oveq2d |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 1 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) ) = ( 1 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 113 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 114 |
33 113
|
eleqtrdi |
⊢ ( 𝐹 ∈ dom 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 115 |
|
fzosplitsn |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) → ( 1 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 116 |
114 115
|
syl |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 1 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 117 |
116
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 1 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 118 |
112 117
|
eqtrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 1 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 119 |
107 118
|
raleqtrrdv |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 120 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ dom 𝑆 ↔ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 121 |
27 41 119 120
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ dom 𝑆 ) |