| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐹  ∈  dom  𝑆  ↔  ( 𝐹  ∈  ( Word  𝑊  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑖  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 8 | 7 | simp1bi | ⊢ ( 𝐹  ∈  dom  𝑆  →  𝐹  ∈  ( Word  𝑊  ∖  { ∅ } ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  𝐹  ∈  ( Word  𝑊  ∖  { ∅ } ) ) | 
						
							| 10 | 9 | eldifad | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  𝐹  ∈  Word  𝑊 ) | 
						
							| 11 |  | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ... ( ♯ ‘ 𝐹 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 13 | 11 12 | sselid | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 14 |  | pfxres | ⊢ ( ( 𝐹  ∈  Word  𝑊  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  prefix  𝑁 )  =  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  prefix  𝑁 )  =  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 16 |  | pfxcl | ⊢ ( 𝐹  ∈  Word  𝑊  →  ( 𝐹  prefix  𝑁 )  ∈  Word  𝑊 ) | 
						
							| 17 | 10 16 | syl | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  prefix  𝑁 )  ∈  Word  𝑊 ) | 
						
							| 18 | 15 17 | eqeltrrd | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  Word  𝑊 ) | 
						
							| 19 |  | pfxlen | ⊢ ( ( 𝐹  ∈  Word  𝑊  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  prefix  𝑁 ) )  =  𝑁 ) | 
						
							| 20 | 10 13 19 | syl2anc | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  prefix  𝑁 ) )  =  𝑁 ) | 
						
							| 21 |  | elfznn | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 23 | 20 22 | eqeltrd | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  prefix  𝑁 ) )  ∈  ℕ ) | 
						
							| 24 |  | wrdfin | ⊢ ( ( 𝐹  prefix  𝑁 )  ∈  Word  𝑊  →  ( 𝐹  prefix  𝑁 )  ∈  Fin ) | 
						
							| 25 |  | hashnncl | ⊢ ( ( 𝐹  prefix  𝑁 )  ∈  Fin  →  ( ( ♯ ‘ ( 𝐹  prefix  𝑁 ) )  ∈  ℕ  ↔  ( 𝐹  prefix  𝑁 )  ≠  ∅ ) ) | 
						
							| 26 | 17 24 25 | 3syl | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ ( 𝐹  prefix  𝑁 ) )  ∈  ℕ  ↔  ( 𝐹  prefix  𝑁 )  ≠  ∅ ) ) | 
						
							| 27 | 23 26 | mpbid | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  prefix  𝑁 )  ≠  ∅ ) | 
						
							| 28 | 15 27 | eqnetrrd | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ≠  ∅ ) | 
						
							| 29 |  | eldifsn | ⊢ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  ( Word  𝑊  ∖  { ∅ } )  ↔  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  Word  𝑊  ∧  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ≠  ∅ ) ) | 
						
							| 30 | 18 28 29 | sylanbrc | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  ( Word  𝑊  ∖  { ∅ } ) ) | 
						
							| 31 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝑁 )  ↔  𝑁  ∈  ℕ ) | 
						
							| 32 | 22 31 | sylibr | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  0  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 33 | 32 | fvresd | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 0 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 34 | 7 | simp2bi | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( 𝐹 ‘ 0 )  ∈  𝐷 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 0 )  ∈  𝐷 ) | 
						
							| 36 | 33 35 | eqeltrd | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 0 )  ∈  𝐷 ) | 
						
							| 37 |  | elfzuz3 | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 39 |  | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 1 ..^ 𝑁 )  ⊆  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 1 ..^ 𝑁 )  ⊆  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 41 | 7 | simp3bi | ⊢ ( 𝐹  ∈  dom  𝑆  →  ∀ 𝑖  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ∀ 𝑖  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 43 |  | ssralv | ⊢ ( ( 1 ..^ 𝑁 )  ⊆  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ∀ 𝑖  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 44 | 40 42 43 | sylc | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 45 |  | fzo0ss1 | ⊢ ( 1 ..^ 𝑁 )  ⊆  ( 0 ..^ 𝑁 ) | 
						
							| 46 | 45 | sseli | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  𝑖  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 47 | 46 | fvresd | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 48 |  | elfzoel2 | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  𝑁  ∈  ℤ ) | 
						
							| 49 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 51 |  | uzid | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 52 | 48 51 | syl | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 53 | 48 | zcnd | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  𝑁  ∈  ℂ ) | 
						
							| 54 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 55 |  | npcan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 56 | 53 54 55 | sylancl | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  +  1 ) )  =  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 58 | 52 57 | eleqtrrd | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 59 |  | peano2uzr | ⊢ ( ( ( 𝑁  −  1 )  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  +  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 60 | 50 58 59 | syl2anc | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 61 |  | fzoss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( 0 ..^ ( 𝑁  −  1 ) )  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( 0 ..^ ( 𝑁  −  1 ) )  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 63 |  | elfzo1elm1fzo0 | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( 𝑖  −  1 )  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) ) | 
						
							| 64 | 62 63 | sseldd | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( 𝑖  −  1 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 65 | 64 | fvresd | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖  −  1 ) )  =  ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 67 | 66 | rneqd | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ran  ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖  −  1 ) ) )  =  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 68 | 47 67 | eleq12d | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  →  ( ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖  −  1 ) ) )  ↔  ( 𝐹 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 69 | 68 | ralbiia | ⊢ ( ∀ 𝑖  ∈  ( 1 ..^ 𝑁 ) ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖  −  1 ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 70 | 44 69 | sylibr | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ∀ 𝑖  ∈  ( 1 ..^ 𝑁 ) ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 71 | 15 | fveq2d | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  prefix  𝑁 ) )  =  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 72 | 71 20 | eqtr3d | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  =  𝑁 ) | 
						
							| 73 | 72 | oveq2d | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 1 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) )  =  ( 1 ..^ 𝑁 ) ) | 
						
							| 74 | 70 73 | raleqtrrdv | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ∀ 𝑖  ∈  ( 1 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 75 | 1 2 3 4 5 6 | efgsdm | ⊢ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  dom  𝑆  ↔  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  ( Word  𝑊  ∖  { ∅ } )  ∧  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑖  ∈  ( 1 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 76 | 30 36 74 75 | syl3anbrc | ⊢ ( ( 𝐹  ∈  dom  𝑆  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  dom  𝑆 ) |