| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
| 4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
| 5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
| 7 |
1 2 3 4 5 6
|
efgsf |
⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| 8 |
7
|
fdmi |
⊢ dom 𝑆 = { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } |
| 9 |
8
|
feq2i |
⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 10 |
7 9
|
mpbir |
⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 11 |
|
frn |
⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 → ran 𝑆 ⊆ 𝑊 ) |
| 12 |
10 11
|
ax-mp |
⊢ ran 𝑆 ⊆ 𝑊 |
| 13 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
| 14 |
1 13
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 15 |
14
|
sseli |
⊢ ( 𝑐 ∈ 𝑊 → 𝑐 ∈ Word ( 𝐼 × 2o ) ) |
| 16 |
|
lencl |
⊢ ( 𝑐 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑐 ) ∈ ℕ0 ) |
| 17 |
15 16
|
syl |
⊢ ( 𝑐 ∈ 𝑊 → ( ♯ ‘ 𝑐 ) ∈ ℕ0 ) |
| 18 |
|
peano2nn0 |
⊢ ( ( ♯ ‘ 𝑐 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑐 ) + 1 ) ∈ ℕ0 ) |
| 19 |
14
|
sseli |
⊢ ( 𝑎 ∈ 𝑊 → 𝑎 ∈ Word ( 𝐼 × 2o ) ) |
| 20 |
|
lencl |
⊢ ( 𝑎 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑎 ∈ 𝑊 → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) |
| 22 |
|
nn0nlt0 |
⊢ ( ( ♯ ‘ 𝑎 ) ∈ ℕ0 → ¬ ( ♯ ‘ 𝑎 ) < 0 ) |
| 23 |
|
breq2 |
⊢ ( 𝑏 = 0 → ( ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ( ♯ ‘ 𝑎 ) < 0 ) ) |
| 24 |
23
|
notbid |
⊢ ( 𝑏 = 0 → ( ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ¬ ( ♯ ‘ 𝑎 ) < 0 ) ) |
| 25 |
22 24
|
imbitrrid |
⊢ ( 𝑏 = 0 → ( ( ♯ ‘ 𝑎 ) ∈ ℕ0 → ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ) ) |
| 26 |
21 25
|
syl5 |
⊢ ( 𝑏 = 0 → ( 𝑎 ∈ 𝑊 → ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ) ) |
| 27 |
26
|
ralrimiv |
⊢ ( 𝑏 = 0 → ∀ 𝑎 ∈ 𝑊 ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ) |
| 28 |
|
rabeq0 |
⊢ ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = ∅ ↔ ∀ 𝑎 ∈ 𝑊 ¬ ( ♯ ‘ 𝑎 ) < 𝑏 ) |
| 29 |
27 28
|
sylibr |
⊢ ( 𝑏 = 0 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = ∅ ) |
| 30 |
29
|
sseq1d |
⊢ ( 𝑏 = 0 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } ⊆ ran 𝑆 ↔ ∅ ⊆ ran 𝑆 ) ) |
| 31 |
|
breq2 |
⊢ ( 𝑏 = 𝑑 → ( ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ( ♯ ‘ 𝑎 ) < 𝑑 ) ) |
| 32 |
31
|
rabbidv |
⊢ ( 𝑏 = 𝑑 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ) |
| 33 |
32
|
sseq1d |
⊢ ( 𝑏 = 𝑑 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } ⊆ ran 𝑆 ↔ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ) |
| 34 |
|
breq2 |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) ) ) |
| 35 |
34
|
rabbidv |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } ) |
| 36 |
35
|
sseq1d |
⊢ ( 𝑏 = ( 𝑑 + 1 ) → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } ⊆ ran 𝑆 ↔ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } ⊆ ran 𝑆 ) ) |
| 37 |
|
breq2 |
⊢ ( 𝑏 = ( ( ♯ ‘ 𝑐 ) + 1 ) → ( ( ♯ ‘ 𝑎 ) < 𝑏 ↔ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) ) ) |
| 38 |
37
|
rabbidv |
⊢ ( 𝑏 = ( ( ♯ ‘ 𝑐 ) + 1 ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } = { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ) |
| 39 |
38
|
sseq1d |
⊢ ( 𝑏 = ( ( ♯ ‘ 𝑐 ) + 1 ) → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑏 } ⊆ ran 𝑆 ↔ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ⊆ ran 𝑆 ) ) |
| 40 |
|
0ss |
⊢ ∅ ⊆ ran 𝑆 |
| 41 |
|
simpr |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) |
| 42 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝑐 → ( ( ♯ ‘ 𝑎 ) = 𝑑 ↔ ( ♯ ‘ 𝑐 ) = 𝑑 ) ) |
| 43 |
42
|
cbvrabv |
⊢ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } = { 𝑐 ∈ 𝑊 ∣ ( ♯ ‘ 𝑐 ) = 𝑑 } |
| 44 |
|
eliun |
⊢ ( 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑥 ) ) |
| 45 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑏 ) ) |
| 46 |
45
|
rneqd |
⊢ ( 𝑥 = 𝑏 → ran ( 𝑇 ‘ 𝑥 ) = ran ( 𝑇 ‘ 𝑏 ) ) |
| 47 |
46
|
eleq2d |
⊢ ( 𝑥 = 𝑏 → ( 𝑐 ∈ ran ( 𝑇 ‘ 𝑥 ) ↔ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) |
| 48 |
47
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑥 ) ↔ ∃ 𝑏 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) |
| 49 |
44 48
|
bitri |
⊢ ( 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ↔ ∃ 𝑏 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) |
| 50 |
|
simpl1r |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) |
| 51 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( ♯ ‘ 𝑎 ) = ( ♯ ‘ 𝑏 ) ) |
| 52 |
51
|
breq1d |
⊢ ( 𝑎 = 𝑏 → ( ( ♯ ‘ 𝑎 ) < 𝑑 ↔ ( ♯ ‘ 𝑏 ) < 𝑑 ) ) |
| 53 |
|
simprl |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑏 ∈ 𝑊 ) |
| 54 |
14 53
|
sselid |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑏 ∈ Word ( 𝐼 × 2o ) ) |
| 55 |
|
lencl |
⊢ ( 𝑏 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) |
| 56 |
54 55
|
syl |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) |
| 57 |
56
|
nn0red |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑏 ) ∈ ℝ ) |
| 58 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 59 |
|
ltaddrp |
⊢ ( ( ( ♯ ‘ 𝑏 ) ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ♯ ‘ 𝑏 ) < ( ( ♯ ‘ 𝑏 ) + 2 ) ) |
| 60 |
57 58 59
|
sylancl |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑏 ) < ( ( ♯ ‘ 𝑏 ) + 2 ) ) |
| 61 |
1 2 3 4
|
efgtlen |
⊢ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) → ( ♯ ‘ 𝑐 ) = ( ( ♯ ‘ 𝑏 ) + 2 ) ) |
| 62 |
61
|
adantl |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑐 ) = ( ( ♯ ‘ 𝑏 ) + 2 ) ) |
| 63 |
|
simpl3 |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑐 ) = 𝑑 ) |
| 64 |
62 63
|
eqtr3d |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ( ♯ ‘ 𝑏 ) + 2 ) = 𝑑 ) |
| 65 |
60 64
|
breqtrd |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ( ♯ ‘ 𝑏 ) < 𝑑 ) |
| 66 |
52 53 65
|
elrabd |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑏 ∈ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ) |
| 67 |
50 66
|
sseldd |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑏 ∈ ran 𝑆 ) |
| 68 |
|
ffn |
⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 → 𝑆 Fn dom 𝑆 ) |
| 69 |
10 68
|
ax-mp |
⊢ 𝑆 Fn dom 𝑆 |
| 70 |
|
fvelrnb |
⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑏 ∈ ran 𝑆 ↔ ∃ 𝑜 ∈ dom 𝑆 ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) |
| 71 |
69 70
|
ax-mp |
⊢ ( 𝑏 ∈ ran 𝑆 ↔ ∃ 𝑜 ∈ dom 𝑆 ( 𝑆 ‘ 𝑜 ) = 𝑏 ) |
| 72 |
67 71
|
sylib |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → ∃ 𝑜 ∈ dom 𝑆 ( 𝑆 ‘ 𝑜 ) = 𝑏 ) |
| 73 |
|
simprrl |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑜 ∈ dom 𝑆 ) |
| 74 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝑜 ∈ dom 𝑆 ↔ ( 𝑜 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝑜 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝑜 ) ) ( 𝑜 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝑜 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 75 |
74
|
simp1bi |
⊢ ( 𝑜 ∈ dom 𝑆 → 𝑜 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 76 |
|
eldifi |
⊢ ( 𝑜 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝑜 ∈ Word 𝑊 ) |
| 77 |
73 75 76
|
3syl |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑜 ∈ Word 𝑊 ) |
| 78 |
|
simpl2 |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑐 ∈ 𝑊 ) |
| 79 |
|
simprlr |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) |
| 80 |
|
simprrr |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑆 ‘ 𝑜 ) = 𝑏 ) |
| 81 |
80
|
fveq2d |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑇 ‘ ( 𝑆 ‘ 𝑜 ) ) = ( 𝑇 ‘ 𝑏 ) ) |
| 82 |
81
|
rneqd |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑜 ) ) = ran ( 𝑇 ‘ 𝑏 ) ) |
| 83 |
79 82
|
eleqtrrd |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑐 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑜 ) ) ) |
| 84 |
1 2 3 4 5 6
|
efgsp1 |
⊢ ( ( 𝑜 ∈ dom 𝑆 ∧ 𝑐 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑜 ) ) ) → ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ∈ dom 𝑆 ) |
| 85 |
73 83 84
|
syl2anc |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ∈ dom 𝑆 ) |
| 86 |
1 2 3 4 5 6
|
efgsval2 |
⊢ ( ( 𝑜 ∈ Word 𝑊 ∧ 𝑐 ∈ 𝑊 ∧ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ) = 𝑐 ) |
| 87 |
77 78 85 86
|
syl3anc |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑆 ‘ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ) = 𝑐 ) |
| 88 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn dom 𝑆 ∧ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ) ∈ ran 𝑆 ) |
| 89 |
69 85 88
|
sylancr |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → ( 𝑆 ‘ ( 𝑜 ++ 〈“ 𝑐 ”〉 ) ) ∈ ran 𝑆 ) |
| 90 |
87 89
|
eqeltrrd |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) ) → 𝑐 ∈ ran 𝑆 ) |
| 91 |
90
|
anassrs |
⊢ ( ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) ∧ ( 𝑜 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑜 ) = 𝑏 ) ) → 𝑐 ∈ ran 𝑆 ) |
| 92 |
72 91
|
rexlimddv |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) ) ) → 𝑐 ∈ ran 𝑆 ) |
| 93 |
92
|
rexlimdvaa |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) → ( ∃ 𝑏 ∈ 𝑊 𝑐 ∈ ran ( 𝑇 ‘ 𝑏 ) → 𝑐 ∈ ran 𝑆 ) ) |
| 94 |
49 93
|
biimtrid |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) → ( 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) → 𝑐 ∈ ran 𝑆 ) ) |
| 95 |
|
eldif |
⊢ ( 𝑐 ∈ ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) ↔ ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) ) |
| 96 |
5
|
eleq2i |
⊢ ( 𝑐 ∈ 𝐷 ↔ 𝑐 ∈ ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) ) |
| 97 |
1 2 3 4 5 6
|
efgs1 |
⊢ ( 𝑐 ∈ 𝐷 → 〈“ 𝑐 ”〉 ∈ dom 𝑆 ) |
| 98 |
96 97
|
sylbir |
⊢ ( 𝑐 ∈ ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → 〈“ 𝑐 ”〉 ∈ dom 𝑆 ) |
| 99 |
95 98
|
sylbir |
⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → 〈“ 𝑐 ”〉 ∈ dom 𝑆 ) |
| 100 |
1 2 3 4 5 6
|
efgsval |
⊢ ( 〈“ 𝑐 ”〉 ∈ dom 𝑆 → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) = ( 〈“ 𝑐 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) ) ) |
| 101 |
99 100
|
syl |
⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) = ( 〈“ 𝑐 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) ) ) |
| 102 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝑐 ”〉 ) = 1 |
| 103 |
102
|
oveq1i |
⊢ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) = ( 1 − 1 ) |
| 104 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 105 |
103 104
|
eqtri |
⊢ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) = 0 |
| 106 |
105
|
fveq2i |
⊢ ( 〈“ 𝑐 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) ) = ( 〈“ 𝑐 ”〉 ‘ 0 ) |
| 107 |
106
|
a1i |
⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 〈“ 𝑐 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝑐 ”〉 ) − 1 ) ) = ( 〈“ 𝑐 ”〉 ‘ 0 ) ) |
| 108 |
|
s1fv |
⊢ ( 𝑐 ∈ 𝑊 → ( 〈“ 𝑐 ”〉 ‘ 0 ) = 𝑐 ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 〈“ 𝑐 ”〉 ‘ 0 ) = 𝑐 ) |
| 110 |
101 107 109
|
3eqtrd |
⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) = 𝑐 ) |
| 111 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn dom 𝑆 ∧ 〈“ 𝑐 ”〉 ∈ dom 𝑆 ) → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) ∈ ran 𝑆 ) |
| 112 |
69 99 111
|
sylancr |
⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ( 𝑆 ‘ 〈“ 𝑐 ”〉 ) ∈ ran 𝑆 ) |
| 113 |
110 112
|
eqeltrrd |
⊢ ( ( 𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → 𝑐 ∈ ran 𝑆 ) |
| 114 |
113
|
ex |
⊢ ( 𝑐 ∈ 𝑊 → ( ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) → 𝑐 ∈ ran 𝑆 ) ) |
| 115 |
114
|
3ad2ant2 |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) → ( ¬ 𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) → 𝑐 ∈ ran 𝑆 ) ) |
| 116 |
94 115
|
pm2.61d |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) ∧ 𝑐 ∈ 𝑊 ∧ ( ♯ ‘ 𝑐 ) = 𝑑 ) → 𝑐 ∈ ran 𝑆 ) |
| 117 |
116
|
rabssdv |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) → { 𝑐 ∈ 𝑊 ∣ ( ♯ ‘ 𝑐 ) = 𝑑 } ⊆ ran 𝑆 ) |
| 118 |
43 117
|
eqsstrid |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ⊆ ran 𝑆 ) |
| 119 |
41 118
|
unssd |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 ) → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) ⊆ ran 𝑆 ) |
| 120 |
119
|
ex |
⊢ ( 𝑑 ∈ ℕ0 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) ⊆ ran 𝑆 ) ) |
| 121 |
|
id |
⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℕ0 ) |
| 122 |
|
nn0leltp1 |
⊢ ( ( ( ♯ ‘ 𝑎 ) ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑎 ) ≤ 𝑑 ↔ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) ) ) |
| 123 |
21 121 122
|
syl2anr |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ 𝑎 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑎 ) ≤ 𝑑 ↔ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) ) ) |
| 124 |
21
|
nn0red |
⊢ ( 𝑎 ∈ 𝑊 → ( ♯ ‘ 𝑎 ) ∈ ℝ ) |
| 125 |
|
nn0re |
⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℝ ) |
| 126 |
|
leloe |
⊢ ( ( ( ♯ ‘ 𝑎 ) ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( ( ♯ ‘ 𝑎 ) ≤ 𝑑 ↔ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) ) ) |
| 127 |
124 125 126
|
syl2anr |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ 𝑎 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑎 ) ≤ 𝑑 ↔ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) ) ) |
| 128 |
123 127
|
bitr3d |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ 𝑎 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) ↔ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) ) ) |
| 129 |
128
|
rabbidva |
⊢ ( 𝑑 ∈ ℕ0 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } = { 𝑎 ∈ 𝑊 ∣ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) } ) |
| 130 |
|
unrab |
⊢ ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) = { 𝑎 ∈ 𝑊 ∣ ( ( ♯ ‘ 𝑎 ) < 𝑑 ∨ ( ♯ ‘ 𝑎 ) = 𝑑 ) } |
| 131 |
129 130
|
eqtr4di |
⊢ ( 𝑑 ∈ ℕ0 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } = ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) ) |
| 132 |
131
|
sseq1d |
⊢ ( 𝑑 ∈ ℕ0 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } ⊆ ran 𝑆 ↔ ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ∪ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) = 𝑑 } ) ⊆ ran 𝑆 ) ) |
| 133 |
120 132
|
sylibrd |
⊢ ( 𝑑 ∈ ℕ0 → ( { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < 𝑑 } ⊆ ran 𝑆 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( 𝑑 + 1 ) } ⊆ ran 𝑆 ) ) |
| 134 |
30 33 36 39 40 133
|
nn0ind |
⊢ ( ( ( ♯ ‘ 𝑐 ) + 1 ) ∈ ℕ0 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ⊆ ran 𝑆 ) |
| 135 |
17 18 134
|
3syl |
⊢ ( 𝑐 ∈ 𝑊 → { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ⊆ ran 𝑆 ) |
| 136 |
|
fveq2 |
⊢ ( 𝑎 = 𝑐 → ( ♯ ‘ 𝑎 ) = ( ♯ ‘ 𝑐 ) ) |
| 137 |
136
|
breq1d |
⊢ ( 𝑎 = 𝑐 → ( ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) ↔ ( ♯ ‘ 𝑐 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) ) ) |
| 138 |
|
id |
⊢ ( 𝑐 ∈ 𝑊 → 𝑐 ∈ 𝑊 ) |
| 139 |
17
|
nn0red |
⊢ ( 𝑐 ∈ 𝑊 → ( ♯ ‘ 𝑐 ) ∈ ℝ ) |
| 140 |
139
|
ltp1d |
⊢ ( 𝑐 ∈ 𝑊 → ( ♯ ‘ 𝑐 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) ) |
| 141 |
137 138 140
|
elrabd |
⊢ ( 𝑐 ∈ 𝑊 → 𝑐 ∈ { 𝑎 ∈ 𝑊 ∣ ( ♯ ‘ 𝑎 ) < ( ( ♯ ‘ 𝑐 ) + 1 ) } ) |
| 142 |
135 141
|
sseldd |
⊢ ( 𝑐 ∈ 𝑊 → 𝑐 ∈ ran 𝑆 ) |
| 143 |
142
|
ssriv |
⊢ 𝑊 ⊆ ran 𝑆 |
| 144 |
12 143
|
eqssi |
⊢ ran 𝑆 = 𝑊 |
| 145 |
|
dffo2 |
⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 ↔ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ∧ ran 𝑆 = 𝑊 ) ) |
| 146 |
10 144 145
|
mpbir2an |
⊢ 𝑆 : dom 𝑆 –onto→ 𝑊 |