Metamath Proof Explorer


Theorem efgsres

Description: An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgsres F dom S N 1 F F 0 ..^ N dom S

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 1 2 3 4 5 6 efgsdm F dom S F Word W F 0 D i 1 ..^ F F i ran T F i 1
8 7 simp1bi F dom S F Word W
9 8 adantr F dom S N 1 F F Word W
10 9 eldifad F dom S N 1 F F Word W
11 fz1ssfz0 1 F 0 F
12 simpr F dom S N 1 F N 1 F
13 11 12 sselid F dom S N 1 F N 0 F
14 pfxres F Word W N 0 F F prefix N = F 0 ..^ N
15 10 13 14 syl2anc F dom S N 1 F F prefix N = F 0 ..^ N
16 pfxcl F Word W F prefix N Word W
17 10 16 syl F dom S N 1 F F prefix N Word W
18 15 17 eqeltrrd F dom S N 1 F F 0 ..^ N Word W
19 pfxlen F Word W N 0 F F prefix N = N
20 10 13 19 syl2anc F dom S N 1 F F prefix N = N
21 elfznn N 1 F N
22 21 adantl F dom S N 1 F N
23 20 22 eqeltrd F dom S N 1 F F prefix N
24 wrdfin F prefix N Word W F prefix N Fin
25 hashnncl F prefix N Fin F prefix N F prefix N
26 17 24 25 3syl F dom S N 1 F F prefix N F prefix N
27 23 26 mpbid F dom S N 1 F F prefix N
28 15 27 eqnetrrd F dom S N 1 F F 0 ..^ N
29 eldifsn F 0 ..^ N Word W F 0 ..^ N Word W F 0 ..^ N
30 18 28 29 sylanbrc F dom S N 1 F F 0 ..^ N Word W
31 lbfzo0 0 0 ..^ N N
32 22 31 sylibr F dom S N 1 F 0 0 ..^ N
33 32 fvresd F dom S N 1 F F 0 ..^ N 0 = F 0
34 7 simp2bi F dom S F 0 D
35 34 adantr F dom S N 1 F F 0 D
36 33 35 eqeltrd F dom S N 1 F F 0 ..^ N 0 D
37 elfzuz3 N 1 F F N
38 37 adantl F dom S N 1 F F N
39 fzoss2 F N 1 ..^ N 1 ..^ F
40 38 39 syl F dom S N 1 F 1 ..^ N 1 ..^ F
41 7 simp3bi F dom S i 1 ..^ F F i ran T F i 1
42 41 adantr F dom S N 1 F i 1 ..^ F F i ran T F i 1
43 ssralv 1 ..^ N 1 ..^ F i 1 ..^ F F i ran T F i 1 i 1 ..^ N F i ran T F i 1
44 40 42 43 sylc F dom S N 1 F i 1 ..^ N F i ran T F i 1
45 fzo0ss1 1 ..^ N 0 ..^ N
46 45 sseli i 1 ..^ N i 0 ..^ N
47 46 fvresd i 1 ..^ N F 0 ..^ N i = F i
48 elfzoel2 i 1 ..^ N N
49 peano2zm N N 1
50 48 49 syl i 1 ..^ N N 1
51 uzid N N N
52 48 51 syl i 1 ..^ N N N
53 48 zcnd i 1 ..^ N N
54 ax-1cn 1
55 npcan N 1 N - 1 + 1 = N
56 53 54 55 sylancl i 1 ..^ N N - 1 + 1 = N
57 56 fveq2d i 1 ..^ N N - 1 + 1 = N
58 52 57 eleqtrrd i 1 ..^ N N N - 1 + 1
59 peano2uzr N 1 N N - 1 + 1 N N 1
60 50 58 59 syl2anc i 1 ..^ N N N 1
61 fzoss2 N N 1 0 ..^ N 1 0 ..^ N
62 60 61 syl i 1 ..^ N 0 ..^ N 1 0 ..^ N
63 elfzo1elm1fzo0 i 1 ..^ N i 1 0 ..^ N 1
64 62 63 sseldd i 1 ..^ N i 1 0 ..^ N
65 64 fvresd i 1 ..^ N F 0 ..^ N i 1 = F i 1
66 65 fveq2d i 1 ..^ N T F 0 ..^ N i 1 = T F i 1
67 66 rneqd i 1 ..^ N ran T F 0 ..^ N i 1 = ran T F i 1
68 47 67 eleq12d i 1 ..^ N F 0 ..^ N i ran T F 0 ..^ N i 1 F i ran T F i 1
69 68 ralbiia i 1 ..^ N F 0 ..^ N i ran T F 0 ..^ N i 1 i 1 ..^ N F i ran T F i 1
70 44 69 sylibr F dom S N 1 F i 1 ..^ N F 0 ..^ N i ran T F 0 ..^ N i 1
71 15 fveq2d F dom S N 1 F F prefix N = F 0 ..^ N
72 71 20 eqtr3d F dom S N 1 F F 0 ..^ N = N
73 72 oveq2d F dom S N 1 F 1 ..^ F 0 ..^ N = 1 ..^ N
74 73 raleqdv F dom S N 1 F i 1 ..^ F 0 ..^ N F 0 ..^ N i ran T F 0 ..^ N i 1 i 1 ..^ N F 0 ..^ N i ran T F 0 ..^ N i 1
75 70 74 mpbird F dom S N 1 F i 1 ..^ F 0 ..^ N F 0 ..^ N i ran T F 0 ..^ N i 1
76 1 2 3 4 5 6 efgsdm F 0 ..^ N dom S F 0 ..^ N Word W F 0 ..^ N 0 D i 1 ..^ F 0 ..^ N F 0 ..^ N i ran T F 0 ..^ N i 1
77 30 36 75 76 syl3anbrc F dom S N 1 F F 0 ..^ N dom S