| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
|
| 2 |
|
efgval.r |
|
| 3 |
|
efgval2.m |
|
| 4 |
|
efgval2.t |
|
| 5 |
|
efgred.d |
|
| 6 |
|
efgred.s |
|
| 7 |
1 2 3 4 5 6
|
efgsdm |
|
| 8 |
7
|
simp1bi |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
eldifad |
|
| 11 |
|
fz1ssfz0 |
|
| 12 |
|
simpr |
|
| 13 |
11 12
|
sselid |
|
| 14 |
|
pfxres |
|
| 15 |
10 13 14
|
syl2anc |
|
| 16 |
|
pfxcl |
|
| 17 |
10 16
|
syl |
|
| 18 |
15 17
|
eqeltrrd |
|
| 19 |
|
pfxlen |
|
| 20 |
10 13 19
|
syl2anc |
|
| 21 |
|
elfznn |
|
| 22 |
21
|
adantl |
|
| 23 |
20 22
|
eqeltrd |
|
| 24 |
|
wrdfin |
|
| 25 |
|
hashnncl |
|
| 26 |
17 24 25
|
3syl |
|
| 27 |
23 26
|
mpbid |
|
| 28 |
15 27
|
eqnetrrd |
|
| 29 |
|
eldifsn |
|
| 30 |
18 28 29
|
sylanbrc |
|
| 31 |
|
lbfzo0 |
|
| 32 |
22 31
|
sylibr |
|
| 33 |
32
|
fvresd |
|
| 34 |
7
|
simp2bi |
|
| 35 |
34
|
adantr |
|
| 36 |
33 35
|
eqeltrd |
|
| 37 |
|
elfzuz3 |
|
| 38 |
37
|
adantl |
|
| 39 |
|
fzoss2 |
|
| 40 |
38 39
|
syl |
|
| 41 |
7
|
simp3bi |
|
| 42 |
41
|
adantr |
|
| 43 |
|
ssralv |
|
| 44 |
40 42 43
|
sylc |
|
| 45 |
|
fzo0ss1 |
|
| 46 |
45
|
sseli |
|
| 47 |
46
|
fvresd |
|
| 48 |
|
elfzoel2 |
|
| 49 |
|
peano2zm |
|
| 50 |
48 49
|
syl |
|
| 51 |
|
uzid |
|
| 52 |
48 51
|
syl |
|
| 53 |
48
|
zcnd |
|
| 54 |
|
ax-1cn |
|
| 55 |
|
npcan |
|
| 56 |
53 54 55
|
sylancl |
|
| 57 |
56
|
fveq2d |
|
| 58 |
52 57
|
eleqtrrd |
|
| 59 |
|
peano2uzr |
|
| 60 |
50 58 59
|
syl2anc |
|
| 61 |
|
fzoss2 |
|
| 62 |
60 61
|
syl |
|
| 63 |
|
elfzo1elm1fzo0 |
|
| 64 |
62 63
|
sseldd |
|
| 65 |
64
|
fvresd |
|
| 66 |
65
|
fveq2d |
|
| 67 |
66
|
rneqd |
|
| 68 |
47 67
|
eleq12d |
|
| 69 |
68
|
ralbiia |
|
| 70 |
44 69
|
sylibr |
|
| 71 |
15
|
fveq2d |
|
| 72 |
71 20
|
eqtr3d |
|
| 73 |
72
|
oveq2d |
|
| 74 |
70 73
|
raleqtrrdv |
|
| 75 |
1 2 3 4 5 6
|
efgsdm |
|
| 76 |
30 36 74 75
|
syl3anbrc |
|