Metamath Proof Explorer


Theorem efgsdm

Description: Elementhood in the domain of S , the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgsdm FdomSFWordWF0Di1..^FFiranTFi1

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 fveq1 f=Ff0=F0
8 7 eleq1d f=Ff0DF0D
9 fveq2 f=Ff=F
10 9 oveq2d f=F1..^f=1..^F
11 fveq1 f=Ffi=Fi
12 fveq1 f=Ffi1=Fi1
13 12 fveq2d f=FTfi1=TFi1
14 13 rneqd f=FranTfi1=ranTFi1
15 11 14 eleq12d f=FfiranTfi1FiranTFi1
16 10 15 raleqbidv f=Fi1..^ffiranTfi1i1..^FFiranTFi1
17 8 16 anbi12d f=Ff0Di1..^ffiranTfi1F0Di1..^FFiranTFi1
18 1 2 3 4 5 6 efgsf S:tWordW|t0Dk1..^ttkranTtk1W
19 18 fdmi domS=tWordW|t0Dk1..^ttkranTtk1
20 fveq1 t=ft0=f0
21 20 eleq1d t=ft0Df0D
22 fveq2 k=itk=ti
23 fvoveq1 k=itk1=ti1
24 23 fveq2d k=iTtk1=Tti1
25 24 rneqd k=iranTtk1=ranTti1
26 22 25 eleq12d k=itkranTtk1tiranTti1
27 26 cbvralvw k1..^ttkranTtk1i1..^ttiranTti1
28 fveq2 t=ft=f
29 28 oveq2d t=f1..^t=1..^f
30 fveq1 t=fti=fi
31 fveq1 t=fti1=fi1
32 31 fveq2d t=fTti1=Tfi1
33 32 rneqd t=franTti1=ranTfi1
34 30 33 eleq12d t=ftiranTti1firanTfi1
35 29 34 raleqbidv t=fi1..^ttiranTti1i1..^ffiranTfi1
36 27 35 bitrid t=fk1..^ttkranTtk1i1..^ffiranTfi1
37 21 36 anbi12d t=ft0Dk1..^ttkranTtk1f0Di1..^ffiranTfi1
38 37 cbvrabv tWordW|t0Dk1..^ttkranTtk1=fWordW|f0Di1..^ffiranTfi1
39 19 38 eqtri domS=fWordW|f0Di1..^ffiranTfi1
40 17 39 elrab2 FdomSFWordWF0Di1..^FFiranTFi1
41 3anass FWordWF0Di1..^FFiranTFi1FWordWF0Di1..^FFiranTFi1
42 40 41 bitr4i FdomSFWordWF0Di1..^FFiranTFi1