Metamath Proof Explorer


Theorem efgsval

Description: Value of the auxiliary function S defining a sequence of extensions. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgsval FdomSSF=FF1

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 id f=Ff=F
8 fveq2 f=Ff=F
9 8 oveq1d f=Ff1=F1
10 7 9 fveq12d f=Fff1=FF1
11 id m=fm=f
12 fveq2 m=fm=f
13 12 oveq1d m=fm1=f1
14 11 13 fveq12d m=fmm1=ff1
15 14 cbvmptv mtWordW|t0Dk1..^ttkranTtk1mm1=ftWordW|t0Dk1..^ttkranTtk1ff1
16 6 15 eqtri S=ftWordW|t0Dk1..^ttkranTtk1ff1
17 fvex FF1V
18 10 16 17 fvmpt FtWordW|t0Dk1..^ttkranTtk1SF=FF1
19 1 2 3 4 5 6 efgsf S:tWordW|t0Dk1..^ttkranTtk1W
20 19 fdmi domS=tWordW|t0Dk1..^ttkranTtk1
21 18 20 eleq2s FdomSSF=FF1