Metamath Proof Explorer


Theorem efgsdmi

Description: Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgsdmi FdomSF1SFranTFF-1-1

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 1 2 3 4 5 6 efgsval FdomSSF=FF1
8 7 adantr FdomSF1SF=FF1
9 fveq2 i=F1Fi=FF1
10 fvoveq1 i=F1Fi1=FF-1-1
11 10 fveq2d i=F1TFi1=TFF-1-1
12 11 rneqd i=F1ranTFi1=ranTFF-1-1
13 9 12 eleq12d i=F1FiranTFi1FF1ranTFF-1-1
14 1 2 3 4 5 6 efgsdm FdomSFWordWF0Di1..^FFiranTFi1
15 14 simp3bi FdomSi1..^FFiranTFi1
16 15 adantr FdomSF1i1..^FFiranTFi1
17 simpr FdomSF1F1
18 nnuz =1
19 17 18 eleqtrdi FdomSF1F11
20 eluzfz1 F1111F1
21 19 20 syl FdomSF111F1
22 14 simp1bi FdomSFWordW
23 22 adantr FdomSF1FWordW
24 23 eldifad FdomSF1FWordW
25 lencl FWordWF0
26 nn0z F0F
27 fzoval F1..^F=1F1
28 24 25 26 27 4syl FdomSF11..^F=1F1
29 21 28 eleqtrrd FdomSF111..^F
30 fzoend 11..^FF11..^F
31 29 30 syl FdomSF1F11..^F
32 13 16 31 rspcdva FdomSF1FF1ranTFF-1-1
33 8 32 eqeltrd FdomSF1SFranTFF-1-1