Metamath Proof Explorer


Theorem efgsval2

Description: Value of the auxiliary function S defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgsval2 AWordWBWA++⟨“B”⟩domSSA++⟨“B”⟩=B

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 1 2 3 4 5 6 efgsval A++⟨“B”⟩domSSA++⟨“B”⟩=A++⟨“B”⟩A++⟨“B”⟩1
8 s1cl BW⟨“B”⟩WordW
9 ccatlen AWordW⟨“B”⟩WordWA++⟨“B”⟩=A+⟨“B”⟩
10 8 9 sylan2 AWordWBWA++⟨“B”⟩=A+⟨“B”⟩
11 s1len ⟨“B”⟩=1
12 11 oveq2i A+⟨“B”⟩=A+1
13 10 12 eqtrdi AWordWBWA++⟨“B”⟩=A+1
14 13 oveq1d AWordWBWA++⟨“B”⟩1=A+1-1
15 lencl AWordWA0
16 15 nn0cnd AWordWA
17 ax-1cn 1
18 pncan A1A+1-1=A
19 16 17 18 sylancl AWordWA+1-1=A
20 16 addlidd AWordW0+A=A
21 19 20 eqtr4d AWordWA+1-1=0+A
22 21 adantr AWordWBWA+1-1=0+A
23 14 22 eqtrd AWordWBWA++⟨“B”⟩1=0+A
24 23 fveq2d AWordWBWA++⟨“B”⟩A++⟨“B”⟩1=A++⟨“B”⟩0+A
25 simpl AWordWBWAWordW
26 8 adantl AWordWBW⟨“B”⟩WordW
27 1nn 1
28 11 27 eqeltri ⟨“B”⟩
29 lbfzo0 00..^⟨“B”⟩⟨“B”⟩
30 28 29 mpbir 00..^⟨“B”⟩
31 30 a1i AWordWBW00..^⟨“B”⟩
32 ccatval3 AWordW⟨“B”⟩WordW00..^⟨“B”⟩A++⟨“B”⟩0+A=⟨“B”⟩0
33 25 26 31 32 syl3anc AWordWBWA++⟨“B”⟩0+A=⟨“B”⟩0
34 s1fv BW⟨“B”⟩0=B
35 34 adantl AWordWBW⟨“B”⟩0=B
36 24 33 35 3eqtrd AWordWBWA++⟨“B”⟩A++⟨“B”⟩1=B
37 7 36 sylan9eqr AWordWBWA++⟨“B”⟩domSSA++⟨“B”⟩=B
38 37 3impa AWordWBWA++⟨“B”⟩domSSA++⟨“B”⟩=B