Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|
2 |
|
efgval.r |
|
3 |
|
efgval2.m |
|
4 |
|
efgval2.t |
|
5 |
|
efgred.d |
|
6 |
|
efgred.s |
|
7 |
1 2 3 4 5 6
|
efgsdm |
|
8 |
7
|
simp1bi |
|
9 |
|
eldifsn |
|
10 |
|
lennncl |
|
11 |
9 10
|
sylbi |
|
12 |
|
fzo0end |
|
13 |
8 11 12
|
3syl |
|
14 |
|
nnm1nn0 |
|
15 |
8 11 14
|
3syl |
|
16 |
|
eleq1 |
|
17 |
|
fveq2 |
|
18 |
17
|
breq2d |
|
19 |
16 18
|
imbi12d |
|
20 |
19
|
imbi2d |
|
21 |
|
eleq1 |
|
22 |
|
fveq2 |
|
23 |
22
|
breq2d |
|
24 |
21 23
|
imbi12d |
|
25 |
24
|
imbi2d |
|
26 |
|
eleq1 |
|
27 |
|
fveq2 |
|
28 |
27
|
breq2d |
|
29 |
26 28
|
imbi12d |
|
30 |
29
|
imbi2d |
|
31 |
|
eleq1 |
|
32 |
|
fveq2 |
|
33 |
32
|
breq2d |
|
34 |
31 33
|
imbi12d |
|
35 |
34
|
imbi2d |
|
36 |
1 2
|
efger |
|
37 |
36
|
a1i |
|
38 |
|
eldifi |
|
39 |
|
wrdf |
|
40 |
8 38 39
|
3syl |
|
41 |
40
|
ffvelrnda |
|
42 |
37 41
|
erref |
|
43 |
42
|
ex |
|
44 |
|
elnn0uz |
|
45 |
|
peano2fzor |
|
46 |
44 45
|
sylanb |
|
47 |
46
|
3adant1 |
|
48 |
47
|
3expia |
|
49 |
48
|
imim1d |
|
50 |
40
|
3ad2ant1 |
|
51 |
50 47
|
ffvelrnd |
|
52 |
|
fvoveq1 |
|
53 |
52
|
fveq2d |
|
54 |
53
|
rneqd |
|
55 |
27 54
|
eleq12d |
|
56 |
7
|
simp3bi |
|
57 |
56
|
3ad2ant1 |
|
58 |
|
nn0p1nn |
|
59 |
58
|
3ad2ant2 |
|
60 |
|
nnuz |
|
61 |
59 60
|
eleqtrdi |
|
62 |
|
elfzolt2b |
|
63 |
62
|
3ad2ant3 |
|
64 |
|
elfzo3 |
|
65 |
61 63 64
|
sylanbrc |
|
66 |
55 57 65
|
rspcdva |
|
67 |
|
nn0cn |
|
68 |
67
|
3ad2ant2 |
|
69 |
|
ax-1cn |
|
70 |
|
pncan |
|
71 |
68 69 70
|
sylancl |
|
72 |
71
|
fveq2d |
|
73 |
72
|
fveq2d |
|
74 |
73
|
rneqd |
|
75 |
66 74
|
eleqtrd |
|
76 |
1 2 3 4
|
efgi2 |
|
77 |
51 75 76
|
syl2anc |
|
78 |
36
|
a1i |
|
79 |
78
|
ertr |
|
80 |
77 79
|
mpan2d |
|
81 |
80
|
3expia |
|
82 |
81
|
a2d |
|
83 |
49 82
|
syld |
|
84 |
83
|
expcom |
|
85 |
84
|
a2d |
|
86 |
20 25 30 35 43 85
|
nn0ind |
|
87 |
15 86
|
mpcom |
|
88 |
13 87
|
mpd |
|
89 |
1 2 3 4 5 6
|
efgsval |
|
90 |
88 89
|
breqtrrd |
|